GTP-Dependent K-Ras Dimerization

Slides:



Advertisements
Similar presentations
Volume 14, Issue 3, Pages (March 2006)
Advertisements

Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Sudha Chakrapani, Luis G. Cuello, D. Marien Cortes, Eduardo Perozo 
Volume 23, Issue 11, Pages (November 2015)
Callum Smits, Peter E. Czabotar, Mark G. Hinds, Catherine L. Day 
Volume 13, Issue 12, Pages (December 2005)
R. Elliot Murphy, Alexandra B. Samal, Jiri Vlach, Jamil S. Saad 
Volume 24, Issue 12, Pages (December 2016)
Volume 9, Issue 11, Pages (November 2001)
Volume 24, Issue 8, Pages (August 2016)
Allosteric Effects of the Oncogenic RasQ61L Mutant on Raf-RBD
Volume 16, Issue 10, Pages (October 2008)
Volume 23, Issue 7, Pages (July 2015)
Volume 14, Issue 3, Pages (March 2006)
HyeongJun Kim, Jen Hsin, Yanxin Liu, Paul R. Selvin, Klaus Schulten 
Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA  Teng-fei Lian, Yong-ping Xu, Lan-fen Li, Xiao-Dong.
Crystal Structure of the Rab9A-RUTBC2 RBD Complex Reveals the Molecular Basis for the Binding Specificity of Rab9A with RUTBC2  Zhe Zhang, Shanshan Wang,
Volume 19, Issue 7, Pages (July 2011)
Volume 24, Issue 4, Pages (April 2016)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Volume 23, Issue 8, Pages (August 2015)
Structural and Functional Studies of the 252 kDa Nucleoporin ELYS Reveal Distinct Roles for Its Three Tethered Domains  Silvija Bilokapic, Thomas U. Schwartz 
Fernando Corrêa, Jason Key, Brian Kuhlman, Kevin H. Gardner  Structure 
Volume 23, Issue 4, Pages (April 2015)
Volume 18, Issue 9, Pages (September 2010)
Volume 21, Issue 10, Pages (October 2013)
Volume 28, Issue 6, Pages (December 2007)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Volume 20, Issue 12, Pages (December 2012)
Supertertiary Structure of the MAGUK Core from PSD-95
Structural Basis for the Differential Effects of CaBP1 and Calmodulin on CaV1.2 Calcium-Dependent Inactivation  Felix Findeisen, Daniel L. Minor  Structure 
Volume 18, Issue 8, Pages (August 2010)
Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling  Shuai Li, Hyunbum Jang, Jian Zhang, Ruth Nussinov 
Structural Basis of Prion Inhibition by Phenothiazine Compounds
Volume 26, Issue 2, Pages e4 (February 2018)
Volume 25, Issue 6, Pages e3 (June 2017)
Structural Diversity in Integrin/Talin Interactions
Volume 24, Issue 8, Pages (August 2016)
Volume 18, Issue 5, Pages (May 2010)
Structural Basis for the Recognition of Methylated Histone H3K36 by the Eaf3 Subunit of Histone Deacetylase Complex Rpd3S  Chao Xu, Gaofeng Cui, Maria.
Volume 21, Issue 1, Pages (January 2013)
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
Insights into Oncogenic Mutations of Plexin-B1 Based on the Solution Structure of the Rho GTPase Binding Domain  Yufeng Tong, Prasanta K. Hota, Mehdi.
Volume 13, Issue 12, Pages (December 2005)
Volume 18, Issue 8, Pages (August 2010)
Autoinhibitory Structure of the WW Domain of HYPB/SETD2 Regulates Its Interaction with the Proline-Rich Region of Huntingtin  Yong-Guang Gao, Hui Yang,
A Self-Sequestered Calmodulin-like Ca2+ Sensor of Mitochondrial SCaMC Carrier and Its Implication to Ca2+-Dependent ATP-Mg/Pi Transport  Qin Yang, Sven.
Tianjun Zhou, Liguang Sun, John Humphreys, Elizabeth J. Goldsmith 
Volume 14, Issue 4, Pages (April 2006)
Volume 24, Issue 10, Pages (October 2016)
Volume 19, Issue 7, Pages (July 2011)
Volume 12, Issue 1, Pages (July 2015)
Volume 20, Issue 1, Pages (January 2012)
Volume 24, Issue 9, Pages (September 2016)
Volume 17, Issue 8, Pages (August 2009)
Volume 24, Issue 7, Pages (July 2016)
Volume 19, Issue 7, Pages (July 2011)
Volume 17, Issue 1, Pages (January 2009)
Volume 23, Issue 1, Pages (January 2015)
Volume 27, Issue 7, Pages e5 (July 2019)
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Volume 20, Issue 4, Pages (April 2012)
Volume 25, Issue 9, Pages e3 (September 2017)
Volume 15, Issue 9, Pages (September 2007)
Structural Basis for Ligand Recognition and Activation of RAGE
Autoinhibitory Structure of the WW Domain of HYPB/SETD2 Regulates Its Interaction with the Proline-Rich Region of Huntingtin  Yong-Guang Gao, Hui Yang,
Volume 109, Issue 12, Pages (December 2015)
K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D  Jillian A. Parker, Alicia Y. Volmar, Spiro Pavlopoulos,
Presentation transcript:

GTP-Dependent K-Ras Dimerization Serena Muratcioglu, Tanmay S. Chavan, Benjamin C. Freed, Hyunbum Jang, Lyuba Khavrutskii, R. Natasha Freed, Marzena A. Dyba, Karen Stefanisko, Sergey G. Tarasov, Attila Gursoy, Ozlem Keskin, Nadya I. Tarasova, Vadim Gaponenko, Ruth Nussinov  Structure  Volume 23, Issue 7, Pages 1325-1335 (July 2015) DOI: 10.1016/j.str.2015.04.019 Copyright © 2015 Elsevier Ltd Terms and Conditions

Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 K-Ras4B Sequence and Structure (A) The sequence of the K-Ras4B protein. In the sequence, hydrophobic, polar/glycine, positively charged, and negatively charged residues are colored black, green, blue, and red, respectively. Underlined residues denote hypervariable region (HVR). (B) Connection of each domain in K-Ras4B protein. (C) A crystal structure of K-Ras4B protein in the GTP-bound state (PDB: 3GFT). The structure was generated for wild-type sequence modified from the crystallized mutant conformation. Functional regions are marked on the structure. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 Dynamic Light Scattering Demonstrates Nucleotide-Dependent Oligomerization of K-Ras4B (A) Dynamic light scattering (DLS) shows formation of a stable dimer (41 kDa) by an active GTP-γ-S-loaded K-Ras4B G domain but not by inactive GDP-loaded (18 kDa) or GppNHp-loaded (21 kDa) protein. (B) DLS suggests formation of a loose dimer by the full-length K-Ras4B1–188-GDP (38 kDa) and a tetramer by K-Ras4B1–188-GTP-γ-S (74 kDa). Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 Predicted Major Homodimer Structures of Active Ras Isomer (A) Predicted homodimer structure of GTP-bound K-Ras4B1–180 with a shifted β-sheet extension (β homodimer; PDB: 4DSO). Binding energy score (BES) for the prediction is −44.53 (template interface: 2erxAB). Interface residues are I21, I24, Q25, H27, V29, E31, D33, I36, E37, D38, S39, Y40, R41, K42, Q43, and L52. A minor β-sheet homodimer structure of K-Ras4B1–180-GTP with an exact sheet-alignment is shown in Figure S3A. (B) Predicted homodimer structure of GTP-bound K-Ras4B1–167 with the interface involving helices α3 and α4 (α homodimer; PDB: 3GFT). Dimer interface is found to be at the allosteric lobe with BES of −17.92 (template interface: 4a9eAB). Interface residues are E91, H94, R97, E98, K101, R102, D105, S106, E107, Q129, D132, L133, R135, and S136. A minor helical homodimer structure of K-Ras4B1–167-GTP with the interface involving helices α4 and α5 is shown in Figure S3B. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 4 Biophysics of K-Ras4B Dimers (A) Isothermal titration calorimetry (ITC) studies of K-Ras4B1–166-GTP-γ-S dimer dissociation. A 30-μM protein solution was titrated into calorimeter cell containing the buffer. (B) Dissociation constant, KD, was determined by microscale thermophoresis (MST) using 30 nM K-Ras4B1–166-GTP-γ-S labeled with fluorescein maleimide on Cys118, which was mixed with increasing concentrations of non-labeled protein. (C) Addition of non-labeled K-Ras4B1–166-GTP-γ-S to fluorescein-labeled K-Ras4B1-166-GTP-γ-S results in significant increase in fluorescence, which was used for determination of KD. Concentration of labeled protein was kept constant at 30 nM. Error bars represent the standard error of three measurements. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 5 NMR Chemical Shift Perturbations of Residues in the GTP-bound K-Ras4B Dimer (A) An overlay of high (blue) and low (red) concentrations of 15N-HSQC NMR spectra of truncated K-Ras4B1–166-GTP-γ-S (245 and 30 μM). Examples of chemical shift changes are marked with arrows. (B) The perturbed residues of K-Ras4B1–166-GTP-γ-S are mapped on the catalytic domain structure of GTP-bound K-Ras4B. (C) An overlay of high (blue) and low (red) concentrations of 15N-HSQC NMR spectra of full-length K-Ras4B1–188-GTP-γ-S (200 and 18 μM). Examples of chemical shift changes are marked with arrows. (D) The perturbed residues of K-Ras4B1–188-GTP-γ-S are mapped on the catalytic domain structure of GTP-bound K-Ras4B. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 6 Comparison of NMR Chemical Shift Data with Computational Predictions Mappings of residues from NMR chemical shift perturbations (CSPs) results for K-Ras4B-GTP-γ-S (Figure S5A) (red and orange sticks) and the predicted residues in the dimer interface by computations for K-Ras4B-GTP β homodimer (as in Figure 3A) (dark blue sticks) and α homodimer (as in Figure 3B) (light blue sticks). Yellow sticks enclosed by transparent surface represent the common residues from both NMR and computations. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 7 Ras-Effector Binding (A) Side-by-side comparisons of the predicted β-sheet interface of K-Ras4B-GTP β homodimer (as in Figure 3A) with interfaces observed in crystal structures of Ras effectors. (B and C) Predicted dimer structures of the GTP-bound K-Ras4B with (B) Ras-binding domain (RBD) of Raf1 (target PDB: 1C1Y; template interface: 1c1yAB) and (C) RBD of B-Raf (target PDB: 3NY5; template interface: 1c1yAB). (D and E) Crystal dimer structures of (D) H-Ras (G12V) with PI3Kγ (PDB: 1LHE8) and (E) H-Ras (E31K) with Ras-interacting-domain (RID) of RalGDS (PDB: 1LFD). Arrows indicate the same β-sheet extension motif in the homodimer and in Ras-effector (Raf, PI3K, and RalGDS) crystal structure complexes. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 8 Ras Dimerization and Raf Activation Cartoons represent (A) Ras dimerization and (B) Ras-Raf binding in the cell membrane. Structure 2015 23, 1325-1335DOI: (10.1016/j.str.2015.04.019) Copyright © 2015 Elsevier Ltd Terms and Conditions