Volume 12, Issue 1, Pages (March 2004)

Slides:



Advertisements
Similar presentations
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Advertisements

Volume 8, Issue 12, Pages (December 2000)
Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Volume 9, Issue 2, Pages (February 2002)
Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins  Eduard Bitto, David B. McKay  Structure 
Volume 87, Issue 2, Pages (October 1996)
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Volume 6, Issue 10, Pages (October 1998)
Engineering a Protein Scaffold from a PHD Finger
Volume 124, Issue 1, Pages (January 2006)
Volume 11, Issue 12, Pages (December 2003)
Volume 5, Issue 1, Pages (January 1997)
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases  Yingwu Xu, Girija Bhargava, Hao Wu,
Crystal Structure of the Soluble Form of Equinatoxin II, a Pore-Forming Toxin from the Sea Anemone Actinia equina  Alekos Athanasiadis, Gregor Anderluh,
Volume 23, Issue 7, Pages (July 2015)
Volume 14, Issue 3, Pages (March 2006)
Volume 11, Issue 11, Pages (November 2003)
West Nile Virus Core Protein
Volume 13, Issue 2, Pages (February 2005)
Volume 19, Issue 7, Pages (July 2011)
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap  Nathan I. Nicely, Justin Kosak, Vesna de Serrano,
Crystal Structure of the MHC Class I Homolog MIC-A, a γδ T Cell Ligand
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Volume 11, Issue 5, Pages (May 2003)
N Khazanovich, KS Bateman, M Chernaia, M Michalak, MNG James  Structure 
Volume 17, Issue 3, Pages (March 2009)
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
The 2.2 Å Crystal Structure of Hsp33
Hongwei Wu, Mark W. Maciejewski, Sachiko Takebe, Stephen M. King 
Volume 108, Issue 3, Pages (February 2002)
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
Structure of the Human IgE-Fc Cε3-Cε4 Reveals Conformational Flexibility in the Antibody Effector Domains  Beth A. Wurzburg, Scott C. Garman, Theodore.
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Volume 16, Issue 4, Pages (April 2008)
The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker  Matthew W Vetting, Douglas H Ohlendorf 
Volume 18, Issue 5, Pages (May 2010)
Crystal Structure of Carnitine Acetyltransferase and Implications for the Catalytic Mechanism and Fatty Acid Transport  Gerwald Jogl, Liang Tong  Cell 
Crystal Structure of the Borna Disease Virus Nucleoprotein
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
Volume 22, Issue 6, Pages (June 2014)
Volume 12, Issue 7, Pages (July 2004)
The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Å resolution ternary complex structures  Stephen B Long, Patrick.
West Nile Virus Core Protein
Volume 6, Issue 2, Pages (February 1998)
Volume 3, Issue 3, Pages (March 1995)
Volume 7, Issue 8, Pages (August 1999)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 91, Issue 5, Pages (November 1997)
Gregory J. Miller, James H. Hurley  Molecular Cell 
Structure of a water soluble fragment of the ‘Rieske’ iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing.
Ying Huang, Michael P. Myers, Rui-Ming Xu  Structure 
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Hideki Kusunoki, Ruby I MacDonald, Alfonso Mondragón  Structure 
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Volume 13, Issue 5, Pages (May 2005)
Pingwei Li, Gerry McDermott, Roland K. Strong  Immunity 
LC8 is structurally variable but conserved in sequence.
The crystal structure of peanut peroxidase
Volume 9, Issue 6, Pages (December 1998)
Volume 18, Issue 2, Pages (April 2005)
The Structure of Sortase B, a Cysteine Transpeptidase that Tethers Surface Protein to the Staphylococcus aureus Cell Wall  Yinong Zong, Sarkis K Mazmanian,
Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine Nucleosidase Reveals Similarity to the Purine Nucleoside Phosphorylases  Jeffrey E.
Volume 16, Issue 5, Pages (May 2008)
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Structural Basis for Activation of ARF GTPase
Volume 22, Issue 6, Pages (June 2014)
Volume 19, Issue 7, Pages (July 2011)
The crystal structure of peanut peroxidase
Stanley J Watowich, John J Skehel, Don C Wiley  Structure 
Presentation transcript:

Volume 12, Issue 1, Pages 145-156 (March 2004) Crystal and Solution Structures of a Superantigen from Yersinia pseudotuberculosis Reveal a Jelly-Roll Fold  Roberta Donadini, Chu Wai Liew, Ann H.Y. Kwan, Joel P. Mackay, Barry A. Fields  Structure  Volume 12, Issue 1, Pages 145-156 (March 2004) DOI: 10.1016/j.str.2003.12.002

Figure 1 Crystal Structure of YPMa (A) Stereo MAD electron density map from SOLVE/RESOLVE at 2.0 Å resolution superposed on the final refined model. Contoured at 1.0σ. Residues from β strands C and G of monomer A are shown. (B) Stereo ribbon diagram of YPM chain A in the crystal structure. The structure is color ramped from blue at the N terminus to red at the C terminus. Sheet 1 is comprised of β strands A, H, C, and F and sheet 2 from β strands B, G, D, and E. (C) Secondary structure topology diagram. Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)

Figure 2 Structure of YPMa Determined by NMR Spectroscopy (A) Overlay of backbones of the 20 lowest energy structures, overlaying backbone atoms of residues 19–33, 47–65, 76–83, and 95–115. (B) Ribbon diagram showing the secondary structure elements in YPMa. Coloring of the β strands is the same as for the X-ray structure. (C) Overlay of the lowest energy NMR structure with monomer A from the X-ray structure, using the same atoms as in (B). Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)

Figure 3 Comparison of YPMa with Other Jelly-Roll Folds Stereo superposition of YPMa (cyan) with satellite tobacco necrosis virus (upper panel) and adipocyte complement-related protein (lower panel). Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)

Figure 4 Variability in Trimer Assembly in the Crystal Structures of YPM, TNFα, and Viral Capsid Proteins 1TNF, TNFα; 2STV, satellite tobacco mosaic virus; 1F15, cucumber mosaic virus; 1STM, satellite panicum mosaic virus; 1CWP, cowpea chlorotic mottle virus. The VIPER website of virus structures (http://mmtsb.scripps.edu/viper/) was used for the generation of capsid trimer coordinates (Reddy et al., 2001). Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)

Figure 5 YPMa Trimer Interface Stereo diagram of the interface between YPM chain A (gray carbon atoms) and chain B (green carbon atoms). Potential hydrogen bonds are indicated by dotted purple lines. Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)

Figure 6 Structure and Sequence Mapping of YPMa Mutants (A) Stereo surface diagrams showing the location of site-directed mutants and naturally occurring variable residues. Mutants in purple have activities <25% of wild-type while mutants in green have activities >75% of wild-type. The upper and lower panels are related by a 180° rotation about a vertical axis. (B) Sequence alignment of YPMa and YPMb. The single-site mutants shown in (A) are included at the bottom of the alignment. Structure 2004 12, 145-156DOI: (10.1016/j.str.2003.12.002)