Crystal Structure of Human Seryl-tRNA Synthetase and Ser-SA Complex Reveals a Molecular Lever Specific to Higher Eukaryotes  Xiaoling Xu, Yi Shi, Xiang-Lei.

Slides:



Advertisements
Similar presentations
Volume 18, Issue 2, Pages (February 2010)
Advertisements

Analysis of the Staphylococcus aureus DgkB Structure Reveals a Common Catalytic Mechanism for the Soluble Diacylglycerol Kinases  Darcie J. Miller, Agoston.
Volume 13, Issue 6, Pages (March 2004)
Thibaut Crepin, Anna Yaremchuk, Mikhail Tukalo, Stephen Cusack 
Volume 15, Issue 11, Pages (November 2007)
Volume 13, Issue 7, Pages (July 2005)
Volume 23, Issue 12, Pages (December 2015)
Volume 18, Issue 11, Pages (November 2010)
Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, Xuewu Zhang  Structure 
Chaperone-Assisted Crystallography with DARPins
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 18, Issue 3, Pages (April 2005)
Volume 24, Issue 8, Pages (August 2016)
Volume 23, Issue 7, Pages (July 2015)
From Shellfish Poisoning to Neuroscience
Volume 18, Issue 2, Pages (February 2010)
Volume 18, Issue 11, Pages (November 2010)
A Model for How Ribosomal Release Factors Induce Peptidyl-tRNA Cleavage in Termination of Protein Synthesis  Stefan Trobro, Johan Åqvist  Molecular Cell 
Volume 20, Issue 5, Pages (May 2012)
Volume 15, Issue 2, Pages (February 2007)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap  Nathan I. Nicely, Justin Kosak, Vesna de Serrano,
Volume 21, Issue 10, Pages (October 2013)
Volume 5, Issue 3, Pages (March 2000)
Volume 22, Issue 8, Pages (August 2014)
Regulation of the Protein-Conducting Channel by a Bound Ribosome
Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX
A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors
Volume 15, Issue 9, Pages (September 2008)
Qian Steven Xu, Rebecca B. Kucera, Richard J. Roberts, Hwai-Chen Guo 
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Structure of the Catalytic Region of DNA Ligase IV in Complex with an Artemis Fragment Sheds Light on Double-Strand Break Repair  Takashi Ochi, Xiaolong.
Volume 18, Issue 3, Pages (March 2010)
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
Volume 21, Issue 12, Pages (December 2013)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 21, Issue 7, Pages (July 2013)
Volume 13, Issue 7, Pages (July 2005)
Volume 22, Issue 2, Pages (February 2014)
Crystal Structures of the BAR-PH and PTB Domains of Human APPL1
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Volume 24, Issue 5, Pages (May 2016)
Another Twist in Helix C and a Missing Pocket
Tianjun Zhou, Liguang Sun, John Humphreys, Elizabeth J. Goldsmith 
Volume 14, Issue 4, Pages (April 2006)
Shiqian Qi, Do Jin Kim, Goran Stjepanovic, James H. Hurley  Structure 
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Gymnastics of Molecular Chaperones
Volume 20, Issue 1, Pages (January 2012)
E.Radzio Andzelm, J Lew, S Taylor  Structure 
Volume 24, Issue 7, Pages (July 2016)
Crystal Structures of Human GlyRα3 Bound to Ivermectin
Thibaut Crepin, Anna Yaremchuk, Mikhail Tukalo, Stephen Cusack 
Hafumi Nishi, Kosuke Hashimoto, Anna R. Panchenko  Structure 
Clemens C. Heikaus, Jayvardhan Pandit, Rachel E. Klevit  Structure 
Volume 24, Issue 12, Pages (December 2016)
Two Pathways Mediate Interdomain Allosteric Regulation in Pin1
Structural Basis of RIP1 Inhibition by Necrostatins
Egor Svidritskiy, Andrei A. Korostelev  Structure 
Volume 14, Issue 3, Pages (March 2006)
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Volume 24, Issue 3, Pages (March 2016)
A General Strategy for Creating “Inactive-Conformation” Abl Inhibitors
Volume 20, Issue 7, Pages (July 2012)
Volume 13, Issue 5, Pages (May 2005)
Volume 18, Issue 11, Pages (November 2010)
Structural Switch of the γ Subunit in an Archaeal aIF2αγ Heterodimer
Volume 16, Issue 7, Pages (July 2008)
Volume 13, Issue 6, Pages (March 2004)
Volume 20, Issue 5, Pages (May 2012)
Presentation transcript:

Crystal Structure of Human Seryl-tRNA Synthetase and Ser-SA Complex Reveals a Molecular Lever Specific to Higher Eukaryotes  Xiaoling Xu, Yi Shi, Xiang-Lei Yang  Structure  Volume 21, Issue 11, Pages 2078-2086 (November 2013) DOI: 10.1016/j.str.2013.08.021 Copyright © 2013 Elsevier Ltd Terms and Conditions

Structure 2013 21, 2078-2086DOI: (10.1016/j.str.2013.08.021) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Overall Structure of Human SerRS in Complex with Ser-SA and the Conformational Change of TBD (A) Crystal structure of human SerRS bound with Ser-SA. The secondary structure elements are labeled. Inset: Structure of the dimeric SerRS with the second subunit generated by crystallographic symmetry operation shown in gray. (B) Ser-SA induced conformational change of the TBD is specific to human SerRS. The Ser-SA bound and free structures from human (PDB IDs 4L87 and 3VBB), C. albicans (PDB IDs 3QO8 and 3QNE), T. brucei (PDB IDs 3LSS and 3LSQ), P. horikoshii (PDB IDs 2DQ0 and 2ZR3), and T. thermophilus (PDB IDs 1SET and 1SRY) are superimposed at the AD. Free SerRSs are shown in gray and the Ser-SA bound SerRSs in colors. See also Figures S1–S3. Structure 2013 21, 2078-2086DOI: (10.1016/j.str.2013.08.021) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Ser-SA-Induced Conformational Change in Human SerRS Is Caused by Shifting the TBD-AD Interactions from α13 in Lower Organisms to α9–α10 in Human SerRS The hydrogen bonding interactions in the “hinge” region mediating TBD (yellow) and AD (green) in crystal structures of (A) human SerRS bound with Ser-SA (PDB ID 4L87), (B) ligand-free human SerRS (PDB ID 3VBB), (C) C. albicans SerRS bound with Ser-SA (PDB ID 3QO8), (D) T. brucei SerRS bound with ATP (PDB ID 3LSS), (E) P. horikoshii SerRS bound with Ser-SA (PDB ID 2DQ0), and (F) T. thermophiles SerRS bound with Ser-SA (PDB ID 1SET). The secondary structures are labeled in gray. See also Figures S4 and S5. Structure 2013 21, 2078-2086DOI: (10.1016/j.str.2013.08.021) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Conservations of Key Residues Involved in the TBD-AD Interaction and of the Insertions I and II in Higher Eukaryotes Key residues involved in communication of TBD and AD are highlighted in yellow (TBD) or in green (AD). The vertebrate-specific Insertions I and II are shown in salmon. Structure 2013 21, 2078-2086DOI: (10.1016/j.str.2013.08.021) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 Structural and Functional Analyses of Insertions I and II (A) Leucine-rich motif of Insertion I (salmon) forms extensive hydrophobic interactions with residues from α3 and α5 (yellow). (B) Structural environment of Insertion II (salmon) near the dimer interface and the active site. (C) Aminoacylation assay indicating that deletion of Insertion I has a larger effect on SerRS aminoacylation activity than deletion of Insertion II. (D) ATP-PPi exchange assay confirming the effect of Insertion I on the active site. Structure 2013 21, 2078-2086DOI: (10.1016/j.str.2013.08.021) Copyright © 2013 Elsevier Ltd Terms and Conditions