Operations Management

Slides:



Advertisements
Similar presentations
Waiting Line Management
Advertisements

Part 3 Probabilistic Decision Models
0 - 0.
Addition Facts
Problem1; Admission Flow
Make to Stock (MTS) vs. Make to Order (MTO)
Components of the Queuing System
Introduction Queuing is the study of waiting lines, or queues.
Capacity Setting and Queuing Theory
Waiting Line Management
Chapter 5: Service Processes
Capacity Planning and Queuing Models
Capacity Planning Chapter 14.
Flow Rate and Capacity Analysis
1 Ardavan Asef-Vaziri Oct. 2011Operations Management: Waiting Lines 1 Polling: Lower Waiting Time, Longer Processing Time (Perhaps) Waiting Lines.
Addition 1’s to 20.
Introduction to Queuing Theory
Test B, 100 Subtraction Facts
Week 1.
OPSM 301: Operations Management Session 12: Service processes and flow variability Koç University Graduate School of Business MBA Program Zeynep Aksin.
Queuing Models.
Capacity Setting and Queuing Theory
Chapter Queueing Notation
S. D. Deshmukh OM V. Capacity Planning in Services u Matching Supply and Demand u The Service Process u Performance Measures u Causes of Waiting u Economics.
Waiting Lines Example Students arrive at the Administrative Services Office at an average of one every 15 minutes, and their request take on average 10.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Capacity Planning and Queuing Models.
S. Chopra/Operations/Managing Services1 Operations Management: Capacity Management in Services Module u Why do queues build up? u Process attributes and.
1 Term Project – Call Center Operations SOM 686, Fall 2006 Darren Mitchell Hayden Gilbert Serge Suprun.
Waiting Lines Example-1
OPSM 405 Service Management Class 19: Managing waiting time: Queuing Theory Koç University Zeynep Aksin
Simulation of multiple server queuing systems
OM&PM/Class 7a1 Operations Management & Performance Modeling 1Operations Strategy 2Process Analysis 3Lean Operations 4Supply Chain Management 5Capacity.
Simulation with ArenaChapter 2 – Fundamental Simulation Concepts Discrete Event “Hand” Simulation of a GI/GI/1 Queue.
Example 14.4 Queuing | 14.2 | 14.3 | 14.5 | 14.6 | 14.7 |14.8 | Background Information n Which system has the.
Management of Waiting Lines
14-1. Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 14 Capacity Planning and Queuing Models.
Waiting Lines.
Waiting lines problems
OM&PM/Class 6b1 1Operations Strategy 2Process Analysis 3Lean Operations 4Supply Chain Management 5Capacity Management in Services –Class 6b: Capacity Analysis.
Waiting line Models.
Chapter 18 Management of Waiting Lines
Problem 8.4 K = ∞ R i = 60/4 = 15 /hr T p = 3 min = 0.05 hour c= 1 R p = c/Tp = 20 /hour Both Ti and Tp exponential Server $20 /hr Phone $5/hr Wait cost.
Capacity Management in Services Module
1 Ardavan Asef-Vaziri Sep-09Operations Management: Waiting Lines3  Terminology: The characteristics of a queuing system is captured by five parameters:
Lecture 4 Mathematical and Statistical Models in Simulation.

Buffer or Suffer Principle
OPSM 301: Operations Management
A Somewhat Odd Service Process (Chapters 1-6)
Spreadsheet Modeling & Decision Analysis
Introduction to Management Science
Operations Management
COMT 2201 Managing Telecommunications Systems. COMT 2202 Managing Telecommunications Configuration Management Security Management Accounting Management.
Chapter 16 Capacity Planning and Queuing Models
Slide 1 Matching Supply with Demand: An Introduction to Operations Management Gérard Cachon ChristianTerwiesch All slides in this file are copyrighted.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slide Chapter 12 Waiting Line Models n The Structure of a Waiting Line System n Queuing Systems n Queuing System Input Characteristics n Queuing System.
1 Safety Capacity Capacity Planning in Services Industry  Matching Supply and Demand in Service Processes  Performance Measures  Causes of Waiting 
Managerial Decision Making Chapter 13 Queuing Models.
Lin/Operations/Managing Services1 Capacity Management in Services Module u Queuing processes and performance measures u Why do queues build up? u Performance.
Queuing Models Part 1: Basics
Managing Flow Variability: Safety Capacity
Effect of Buffer Capacity
Solutions Hwk Que3 1 The port of Miami has 3 docking berths for loading and unloading ships but is considering adding a 4th berth.
Queuing Theory By: Brian Murphy.
Queuing Models and Capacity Planning
Discrete Event “Hand” Simulation of a GI/GI/1 Queue
Waiting Line Models Waiting takes place in virtually every productive process or service. Since the time spent by people and things waiting in line is.
Effect of Buffer Capacity
Presentation transcript:

Operations Management Queuing (Part 2) - Lecture 7 (Chapter 8) Dr. Ursula G. Kraus

Review Performance Measures for Queuing Systems Special Queuing Model: M/M/1

Learning Objectives Understand how variability in arrivals and services can lead to a build up of queues. ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................

Agenda Review: General Queuing Models Special Queuing Models SofOptics

Agenda Review: General Queuing Models Special Queuing Models

Example: Calling Center Consider a mail order company that has one customer service representative (CSR) taking calls. When the CSR is busy, the caller is put on hold. The calls are taken in the order received. Each minute a caller spends on hold costs the company $2 in telephone charges, customer dissatisfaction and loss of future business. In addition, the CSR is paid $20 an hour. Assume that calls arrive exponentially at the rate of one every 3 minutes. The CSR takes on average 2.5 minutes to complete the order. The time for service is also assumed to be exponentially distributed. (a) What is the capacity utilization? (b) How many customers will be on average on hold? (c) What is the average time spent on hold? (d) Estimate the average hourly cost of operating the call center. ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Solution: Calling Center ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Cost of Service Tradeoff Total cost Expected costs (Service) Capacity Cost (Customer) Waiting Cost Level of service

Example: Ticket Outlet Customers arrive at a suburban ticket outlet at a rate of 14 per hour on Monday mornings. Selling the tickets and providing general information takes an average of 3 minutes per customer. There is one ticket agent on duty on Mondays. Assume exponential interarrival and service times. What percentage of time is the ticket agent busy? How many customers are in line, on average? How many minutes, on average, will a customer spend in the system? What is the average waiting time in queue? ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Solution: Ticket Outlet ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Is Idleness a Good Thing? Base (minimum) Capacity needed: R Safety Capacity: Rp - R capacity carried in excess of expected demand to cover for system variability Idle Percentage: 1 - ρ = 1 - R/Rp Source: Managing Business Process Flows (1999)

Performance Measures to Focus on Sales Throughput (R) Abandoning rate (Ra ) Cost Capacity utilization (r) Queue length (Iq) ; Total number in process (I) Customer Service Waiting time in queue (Tq ); Total time in process (T) Blocking rate (Rb ) ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Levers for System Improvements Increase process capacity Rp adding more servers working faster (decreasing Tp) Reduce waiting time Tq and queue length Iq reduce variability decrease arrival rate (not desirable in general) Source: Managing Business Process Flows (1999)

Example: Calling Center with 2 CSRs (2 servers) 2 phone numbers Company hires a second CSR who is assigned a new telephone number. Customers are now free to call either of the two numbers. Once they are put on hold customers tend to stay on line since the other may be worse 1 phone number: pooling Both CSRs share the same telephone number and the customers on hold are in a single queue Server Queue 50% Servers Queue ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Solution: Calling Center with 2 CSRs (servers) ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................ Source: Managing Business Process Flows (1999)

Agenda Review: General Queuing Models Special Queuing Models SofOptics