5.3: Applications of Systems of Linear Equations (AKA Word Problems)

Slides:



Advertisements
Similar presentations
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Advertisements

Solving Systems of Linear Equations Graphically and Numerically
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Total: $14,300. Total popcorn sales - $21,628 Pack 7 Commission - $7,569 Scouts on rolls= 86 Scouts sold popcorn= 60 Scouts who: sold $450 or above= 23.
Welcome to Who Wants to be a Millionaire
Chapter 6 Review: Systems of Equations Honors Math – Grade 8.
Chapter 7 Algebra II Review JEOPARDY Jeopardy Review.
Solving Linear Systems in Three Variables 3-6
Maines Dirigo Health Reform: Leading the Way to Universal Coverage? Academy Health State Health Research & Policy Interest Group June 2, 2007 Debra J.
6-4 Percent of a Number Do Now Multiply   15
Midterm Review Part 2. Answer the following questions. Take your time and double check your answers!!!
The “Rule of 72” Lesson Objectives: Understand compounding interest
Summative Math Test Algebra (28%) Geometry (29%)
© Family Economics & Financial Education – Revised November 2004 – Saving Unit – Rule of 72 Funded by a grant from Take Charge America, Inc. to the Norton.
Who Wants To Be A Millionaire? Decimal Edition Question 1.
Welcome to Who Wants to be a Millionaire
Welcome to Who Wants to be a Millionaire
Welcome to Who Wants to be a Millionaire
Quality Costs and Productivity: Measurement, Reporting, and Control
$100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400 $100 $200 $300 $400.
Applications of Systems of Equations
Time Value of Money (2) and Inflation Personal Finance: Another Perspective.
This Weeks Topics Review Class Concepts -Simple Pricing -Price Customization by Customer Type -Two-Part Tariff -Simple -With Two Demand Curves Review Homework.
The POWER of Understanding the Market $9.5 BILLION in sales in 10 years.
MCQ Chapter 07.
8.5 Applications of Systems of Linear Equations
Applying Systems of Equations – Part 1 Honors Math – Grade 8.
Writing Linear Models from Word Problems
TCM #8775: Lesson 3.18 Solving Money Word Problems Todays Lesson.
Section 4B Savings Plans and Investments Pages
Five-Minute Check (over Lesson 5–9) Main Idea and Vocabulary
Resistência dos Materiais, 5ª ed.
Reporting and Interpreting Owners’ Equity
$1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100 Welcome.
GLOBAL POSITIONING SYSTEM
+ Homework 0.45(800) = % 50% = 45% a b a 0.50b 360
Chapter 2, Problem 1. Find the correct numerical value for the following factors from the interest tables. 1. (F/P,8%,25) 2. (P/A,3%,8) 3. (P/G,9%,20)
SECTION 2-3 APPLICATIONS OF LINEAR EQUATIONS Investment Problems Example 1 An investment counselor invested 75% of a client’s money into a 9% annual simple.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Notes Over 4.5 Solving a Linear System Use an Inverse Matrix to solve the linear system.
Homework #1 p p = cost pen m m = cost of a mech. pencil If you buy six pens and one mechanical pencil, you’ll get only $1 change from your $10 bill. But.
Applications of Systems of Linear Equations
If two lines intersect at one point, the system is called 1.consistent and dependent 2.consistent and independent 3.inconsistent and independent 4.inconsistent.
Distribution in Percentage Equations and Word Problems
Objective - To solve various problems using systems of linear equations. We will be studying 3 types of problems 1) Number and Value Problems 2) Mixture.
Systems of Linear Equations MATH 102 Contemporary Math S. Rook.
Lesson 7.2- Substitution, pg. 376
CCA week 12 Review. Write a linear equation to represent this situation.
Four most popular team sportsteam sports football basketball baseball ice hockey.
Trevor is 5 years more than half his mother’s age when he boards a train leaving Los Angeles. He is traveling south on a train numbered with a tens digit.
4.3 Applications of Systems of Linear Equations
Precal D Section 1.4 Sample Problems. Example 1 - Investments A total of $12,000 is invested in a savings and a checking account. The savings account.
Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A set of equations is called a system of equations. The solution.
10-8 Mixture Problems Standard 15.0: Apply algebraic techniques to percent mixture problems. Standard 15.0: Apply algebraic techniques to percent mixture.
EIGHTH GRADE MATH FINAL REVIEW Evaluate each expression for the given values of the variables. 1. 6x + 9 for x = 3 2. x + 14 for x = x + 3y.
Algebra Review. Systems of Equations Review: Substitution Linear Combination 2 Methods to Solve:
Algebra Applications of Linear Systems. Amusement Park Two families go to Busch Gardens. In Family A, they buy 3 children (ages 3 to 9) tickets.
Professional Athlete Salaries Presented by: Nick Bongiovanni.
Applications of Systems of Linear Equations
Lesson 3 – Systems of 2 Variable Equations in Context
Opening Routine The total ticket sales for a high school basketball game were $2,260. The ticket price for students was $2.25 less than the adult ticket.
Linear Equations on One Variable
Customize your Sports Team Uniforms custom-uniforms/
7.3 – 7.4 Solve Linear Systems Algebraically Word Problems
Constant Rates of Change
3.2 - Solving Systems through Substitution
Solving Systems Using Elimination
5.4B Applying Systems Of Linear Equations
EXAMPLE 6 Find the inverse of a power model Ticket Prices
Presentation transcript:

5.3: Applications of Systems of Linear Equations (AKA Word Problems) Algebra 2 5.3: Applications of Systems of Linear Equations (AKA Word Problems)

Problem 1 M = Y – 32.8 M + Y = 266.6 M = (149.7) – 32.8 In 2003, the New York Yankees and the New York Mets had the highest payrolls in major league baseball. The Mets’ payroll was $32.8 million less than the Yankees. If the two payrolls totaled $266.6 million, what was the payroll of each team? M = Y – 32.8 M = (149.7) – 32.8 M = 116.9 M + Y = 266.6 (Y – 32.8) + Y = 266.6 2Y – 32.8 = 266.6 2Y = 299.4 Y = 149.7 Mets = $116.9 million Yankees = $149.7 million

Problem 2 It was reported in 2004 that during the National Hockey League and National Basketball Association seasons, two hockey tickets and one basketball ticket cost $126.77. At the same prices, one hockey ticket and two basketball tickets cost $128.86. What were the average ticket prices for the two sports? (1) (-2) Hockey Ticket = $41.36 Basketball Ticket = $43.65

Problem 3 $6 x 6x $2 y 2y $5 200 5(200) Continued… Randall wants to mix a total of 200 lbs of nuts worth $5 per pound by mixing some $6 per pound cashews with some $2 per pound peanuts. How many pounds of each type of nut must he mix? Cost Pounds Total $6 x 6x $2 y 2y $5 200 5(200) Equation 1 Equation 2 Continued…

Problem 3 continued… (-6) (1) 150 pounds of cashews 50 pounds of peanuts

Problem 4 Carter Fenton invested $12,000 last year in two accounts: one earning 3% interest and the other earning 4%. If he made $440 in interest last year, how much did he have in each account? % Amount Invested Interest 3% x .03x 4% y .04y 12,000 440 Equation 1 Equation 2 Continued…

Problem 4 continued… (-.03) (1) $4,000 at 3% interest