Copyright © Cengage Learning. All rights reserved.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

Mathematics1 Mathematics 1 Applied Informatics Štefan BEREŽNÝ.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Notes, part 5. L’Hospital Another useful technique for computing limits is L'Hospital's rule: Basic version: If, then provided the latter exists. This.
NUMERICAL METHODS WITH C++ PROGRAMMING
Lesson 2.5 The Fundamental Theorem of Algebra. For f(x) where n > 0, there is at least one zero in the complex number system Complex → real and imaginary.
Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Additional Topics in Differential Equations
Infinite Series Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 4 Applications of Differentiation.
Integration Copyright © Cengage Learning. All rights reserved.
Newton’s Method Other Recursive Methods Modified Fixed Point Method.
Problem of the Day No calculator! What is the instantaneous rate of change at x = 2 of f(x) = x2 - 2 ? x - 1 A) -2 C) 1/2 E) 6 B) 1/6 D) 2.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Topic: U4L5 Remainder and Factor Theorems EQ: Can I correctly apply the Remainder and Factor Theorems to help me factor higher order polynomials?
AUGUST 2. MATH 104 Calculus I Review of previous material…. …methods and applications of integration, differential equations ………..
§3.6 Newton’s Method. The student will learn about
Remainder and Factor Theorems
Linearization, Newton’s Method
Infinite Series Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 4 Complex Numbers.
Limits and Their Properties 1 Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
CHAPTER 3 NUMERICAL METHODS
Welcome to Precalculus!
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Multiplicity of a Root First Modified Newton’s Method
Apply the Fundamental Theorem of Algebra Lesson 2.7
Graphing Polynomial Functions
Warmup Solve:
Solution of Equations by Iteration
Polynomial Approximations of Elementary Functions
Polynomial and Rational Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
The Fundamental Theorem of Algebra And Zeros of Polynomials
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Section 4.8: Newton’s Method
Copyright © Cengage Learning. All rights reserved.
3.8 Newton’s Method How do you find a root of the following function without a graphing calculator? This is what Newton did.
Copyright © Cengage Learning. All rights reserved.
3.8: Newton’s Method Greg Kelly, Hanford High School, Richland, Washington.
Polynomial and Rational Functions
3.8: Newton’s Method Greg Kelly, Hanford High School, Richland, Washington.
Copyright © Cengage Learning. All rights reserved.
Integration Techniques, L’Hôpital’s Rule, and Improper Integrals
Rolle’s Theorem and the Mean Value Theorem
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
MATH 1910 Chapter 3 Section 8 Newton’s Method.
1 Newton’s Method.
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. 3 Applications of Differentiation Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved. 3.8 Newton’s Method Copyright © Cengage Learning. All rights reserved.

Objective Approximate a zero of a function using Newton’s Method.

Newton’s Method

Newton’s Method The technique for approximating the real zeros of a function is called Newton’s Method, and it uses tangent lines to approximate the graph of the function near its x-intercepts. To see how Newton’s Method works, consider a function f that is continuous on the interval [a, b] and differentiable on the interval (a, b). If f(a) and f(b) differ in sign, then, by the Intermediate Value Theorem, f must have at least one zero in the interval (a, b).

Newton’s Method Suppose you estimate this zero to occur at as shown in Figure 3.60(a). Newton’s Method is based on the assumption that the graph of f and the tangent line at (x1, f(x1)) both cross the x-axis at about the same point. Figure 3.60(a)

Newton’s Method Because you can easily calculate the x-intercept for this tangent line, you can use it as a second (and, usually, better) estimate of the zero of f. The tangent line passes through the point (x1, f(x1)) with a slope of f′(x1). In point-slope form, the equation of the tangent line is therefore

Newton’s Method Letting y = 0 and solving for x produces So, from the initial estimate x1 you obtain a new estimate Figure 3.60(b)

Newton’s Method You can improve on x2 and calculate yet a third estimate Repeated application of this process is called Newton’s Method.

Newton’s Method

Example 1 – Using Newton’s Method Calculate three iterations of Newton’s Method to approximate a zero of f(x) = x2 – 2. Use x1 = 1 as the initial guess. Solution: Because f(x) = x2 – 2, you have f′(x) = 2x, and the iterative process is given by the formula

Example 1 – Solution cont’d The calculations for three iterations are shown in the table.

Example 1 – Solution cont’d Of course, in this case you know that the two zeros of the function are To six decimal places, So, after only three iterations of Newton’s Method, you have obtained an approximation that is within 0.000002 of an actual root.

Example 1 – Solution cont’d The first iteration of this process is shown in Figure 3.61. Figure 3.61

Newton’s Method When the approximations approach a limit, the sequence x1, x2, x3, . . . , xn, . . . is said to converge. Moreover, if the limit is c, it can be shown that c must be a zero of f. Newton’s Method does not always yield a convergent sequence. One way it can fail to do so is shown in Figure 3.63. Figure 3.63

Newton’s Method Because Newton’s Method involves division by f′(xn), it is clear that the method will fail if the derivative is zero for any xn in the sequence. When you encounter this problem, you can usually overcome it by choosing a different value for x1. Another way Newton’s Method can fail is shown in the next example.

Example 3 – An Example in Which Newton’s Method Fails The function f(x) = x1/3 is not differentiable at x = 0. Show that Newton’s Method fails to converge using x1 = 0.1. Solution:

Example 3 – Solution cont’d The calculations are shown in the table.

Example 3 – Solution cont’d This table and Figure 3.64 indicate that xn, continues to increase in magnitude as and so the limit of the sequence does not exist. Figure 3.64

Newton’s Method It can be shown that a condition sufficient to produce convergence of Newton’s Method to a zero of f is that on an open interval containing the zero.

Algebraic Solutions of Polynomial Equations

Algebraic Solutions of Polynomial Equations The zeros of some functions, such as f(x) = x3 – 2x2 – x + 2 can be found by simple algebraic techniques, such as factoring. The zeros of other functions, such as f(x) = x3 – x + 1 cannot be found by elementary algebraic methods.

Algebraic Solutions of Polynomial Equations This particular function has only one real zero, and by using more advanced algebraic techniques you can determine the zero to be Because the exact solution is written in terms of square roots and cube roots, it is called a solution by radicals.