Volume 103, Issue 2, Pages (July 2012)

Slides:



Advertisements
Similar presentations
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Advertisements

(Un)Folding Mechanisms of the FBP28 WW Domain in Explicit Solvent Revealed by Multiple Rare Event Simulation Methods  Jarek Juraszek, Peter G. Bolhuis 
Young Min Rhee, Vijay S. Pande  Biophysical Journal 
Volume 109, Issue 7, Pages (October 2015)
Volume 98, Issue 3, Pages (February 2010)
Maik Goette, Martin C. Stumpe, Ralf Ficner, Helmut Grubmüller 
pH Dependence of Charge Multipole Moments in Proteins
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Lung Surfactant Protein SP-B Promotes Formation of Bilayer Reservoirs from Monolayer and Lipid Transfer between the Interface and Subphase  Svetlana Baoukina,
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Volume 124, Issue 1, Pages (January 2006)
Volume 22, Issue 6, Pages (June 2014)
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 19, Issue 7, Pages (July 2011)
Tamas Yelland, Snezana Djordjevic  Structure 
Volume 23, Issue 7, Pages (July 2015)
Structural and Dynamic Properties of the Human Prion Protein
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 96, Issue 4, Pages (February 2009)
Volume 106, Issue 6, Pages (March 2014)
Volume 108, Issue 6, Pages (March 2015)
Microsecond Unfolding Kinetics of Sheep Prion Protein Reveals an Intermediate that Correlates with Susceptibility to Classical Scrapie  Kai-Chun Chen,
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Volume 109, Issue 8, Pages (October 2015)
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Shu-Chun Cheng, Gu-Gang Chang, Chi-Yuan Chou  Biophysical Journal 
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 100, Issue 3, Pages (February 2011)
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Volume 113, Issue 4, Pages (August 2017)
Dynamic Motions of the HIV-1 Frameshift Site RNA
Structural Basis for Vertebrate Filamin Dimerization
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 96, Issue 7, Pages (April 2009)
Volume 20, Issue 3, Pages (March 2012)
Variable-Field Analytical Ultracentrifugation: I
Volume 18, Issue 6, Pages (June 2010)
Volume 15, Issue 9, Pages (September 2007)
Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane  Michele.
Volume 99, Issue 2, Pages (July 2010)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Structural Flexibility of CaV1. 2 and CaV2
Volume 110, Issue 1, Pages (January 2016)
A Perspective on Mechanisms of Protein Tetramer Formation
Yijin Liu, David M.J. Lilley  Biophysical Journal 
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Volume 111, Issue 1, Pages (July 2016)
Dirk Gillespie, Le Xu, Gerhard Meissner  Biophysical Journal 
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Volume 22, Issue 8, Pages (August 2015)
Two Latent and Two Hyperstable Polymeric Forms of Human Neuroserpin
Multi-Image Colocalization and Its Statistical Significance
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Conformational Transitions in Protein-Protein Association: Binding of Fasciculin-2 to Acetylcholinesterase  Jennifer M. Bui, Zoran Radic, Palmer Taylor,
Volume 97, Issue 8, Pages (October 2009)
Volume 102, Issue 12, Pages (June 2012)
Martin Held, Philipp Metzner, Jan-Hendrik Prinz, Frank Noé 
Volume 96, Issue 3, Pages (February 2009)
Volume 84, Issue 1, Pages (January 2003)
Volume 22, Issue 6, Pages (June 2014)
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Volume 113, Issue 12, Pages (December 2017)
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES  Maciej Wiktor, Oliver Hartley, Stephan.
Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations  Takao Yoda, Yuji Sugita, Yuko Okamoto  Biophysical.
Volume 98, Issue 3, Pages (February 2010)
A Perspective on Mechanisms of Protein Tetramer Formation
Presentation transcript:

Volume 103, Issue 2, Pages 303-312 (July 2012) Bovine β-Lactoglobulin Is Dimeric Under Imitative Physiological Conditions: Dissociation Equilibrium and Rate Constants over the pH Range of 2.5–7.5  Davide Mercadante, Laurence D. Melton, Gillian E. Norris, Trevor S. Loo, Martin A.K. Williams, Renwick C.J. Dobson, Geoffrey B. Jameson  Biophysical Journal  Volume 103, Issue 2, Pages 303-312 (July 2012) DOI: 10.1016/j.bpj.2012.05.041 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 (A) Cartoon representation of the dimeric and monomeric βLg structures (PDB code 1BEB, chains A and B). The α-helices are colored red, the β-strands are green, and loops and turns are white. (B) Schematic representation of βLg topology (color code as in panel A). The I strand is involved in the dimer formation, whereas strands A–H fold into two β-sheets (strands AN-D and E-H-AC, where AN and AC respectively denote the N- and C-terminal portions of strand A, which suffers a 90° bend). Biophysical Journal 2012 103, 303-312DOI: (10.1016/j.bpj.2012.05.041) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 SV data for βLg A at pH 2.5 in 20 mM citric acid, 100 mM NaCl, and at 25°C. (A) Continuous c(s) analysis derived from SV data for βLg A at concentrations of (B) 5.3 μM (solid line), (C) 15.7 μM (dashed line), and (D) 33.4 μM (dotted line). The SV data and least-squares fits are shown in the bottom panels and the residuals in the top panels of B, C, and D. Statistics for the nonlinear least-squares fits: (B) RMSD = 0.005, runs test-Z score = 7.6; (C) RMSD = 0.006, runs test-Z score = 13; (D) RMSD = 0.005, runs test-Z score = 12. (E) van Holde-Weischet integral distribution plot for βLg A at pH 2.5 and concentrations of ∼5 μM (squares), 15 μM (circles), and 45 μM (triangles). Biophysical Journal 2012 103, 303-312DOI: (10.1016/j.bpj.2012.05.041) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 Normalized c(s20,w) distribution plots for βLg A over a pH range of 2.5–7.5. The figure shows the distribution plots for βLg A obtained from the fitting of SV data using a continuous c(s) distribution model. The three protein concentrations explored were ∼5 μM (solid line), 15 μM (dashed line), and 45 μM (dotted line); actual concentrations are given in parentheses. In 20 mM citrate and 100 mM NaCl: (A) pH 2.5 (5.3, 15.7, 33.4 μM), (B) pH 3.5 (4.8, 15.8, 26.7 μM), (C) pH 4.5 (2.5, 14.5, 43.9 μM), and (D) pH 5.5 (6.5, 16.8, 47.3 μM). In 20 mM MOPS and 100 mM NaCl: (E) pH 6.5 (3.5, 11.0, 33.0 μM) and (F) pH 7.5 (5.15, 22.6, 36.5 μM). Statistics for the fits can be found in Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5, Fig. S6, and Fig. S7. Biophysical Journal 2012 103, 303-312DOI: (10.1016/j.bpj.2012.05.041) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 Top panels: Wireframe mesh representation of the ion charge-density maps calculated around the βLg A dimer in different NaCl concentrations at pH 2.5 (A) and pH 7.5 (B), and represented around a single monomer for clarity. The ion charge density is shown at ion concentrations of 5 mM (red), 10 mM (blue), 15 mM (yellow), and 20 mM (cyan). βLg A is represented in cartoon mode and colored by secondary structure elements (cyan, loops; blue, turns; violet, α-helices; yellow, β-strands). Bottom panels: Ionic atmosphere calculated around a βLg A dimer at pH 2.5 (C) and 7.5 (D) and projected onto a plane parallel to the dimer interface. For clarity, only one monomer of the protein is shown. Positive and negative ion atmospheres are colored in red and blue, respectively, at ±0.1 kT/e- contour levels. Biophysical Journal 2012 103, 303-312DOI: (10.1016/j.bpj.2012.05.041) Copyright © 2012 Biophysical Society Terms and Conditions