Ellipse.

Slides:



Advertisements
Similar presentations
Ellipses Date: ____________.
Advertisements

10.4 Ellipses p An ellipse is a set of points such that the distance between that point and two fixed points called Foci remains constant d1 d2.
10.3 Ellipses JMerrill, General Second Degree Equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0.
Section 9.1 The Ellipse. Overview Conic sections are curves that result from the intersection of a right circular cone—think ice cream cone—and a plane—think.
Analytic Geometry Section 3.3
Section 9.1 The Ellipse.
Ellipses Objective: Be able to get the equation of an ellipse from given information or the graph Be able to find the key features of and graph an ellipse.
Ellipses Unit 7.2. Description Locus of points in a plane such that the sum of the distances from two fixed points, called foci is constant. P Q d 1 +
Hyperbolas 9.3. Definition of a Hyperbola A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from two distinct.
Advanced Geometry Conic Sections Lesson 4
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Translating Conic Sections
11.3 Ellipses Objective: By the end of the lesson, you should be able to write an equation of an ellipse and sketch its graph.
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Ellipses Part 1 Circle/Ellipse Quiz: March 9 Midterm: March 11.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Conics This presentation was written by Rebecca Hoffman.
The Ellipse.
MATT KWAK 10.2 THE CIRCLE AND THE ELLIPSE. CIRCLE Set of all points in a plane that are at a fixed distance from a fixed point(center) in the plane. With.
Warm up Write the standard form of the equation: Then find the radius and the coordinates of the center. Graph the equation.
Hyperbolas. Hyperbola: a set of all points (x, y) the difference of whose distances from two distinct fixed points (foci) is a positive constant. Similar.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
Lake Zurich High School
Conics Ellipses. Ellipse Definition: the set of all points in a plane whose distances from two fixed points in the plane have a constant sum. The fixed.
8.3 Ellipses May 15, Ellipse Definition: Is the set of all points such that the sum of the distances between the point and the foci is the same.
Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
1 st Day Section A circle is a set of points in a plane that are a given distance (radius) from a given point (center). Standard Form: (x – h) 2.
Hyperbolas Objective: graph hyperbolas from standard form.
Section 10.4 Last Updated: December 2, Hyperbola  The set of all points in a plane whose differences of the distances from two fixed points (foci)
10.2 Ellipses. Ellipse – a set of points P in a plane such that the sum of the distances from P to 2 fixed points (F 1 and F 2 ) is a given constant K.
March 22 nd copyright2009merrydavidson. Horizontal Ellipse An ellipse is the set of all points for which the sum of the distances at 2 fixed points is.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Get out Ellipse: Notes Worksheet and complete #2 & #3 (Notes Sheet From Yesterday)
10.2 Ellipses.
Ellipses Date: ____________.
30. Ellipses.
Day 20 AGENDA: Quiz minutes.
Graph and Write Equations of Elllipses
Hyperbolas 4.4 Chapter 10 – Conics. Hyperbolas 4.4 Chapter 10 – Conics.
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Ellipses 5.3 (Chapter 10 – Conics). Ellipses 5.3 (Chapter 10 – Conics)
MATH 1330 Section 8.2b.
Ellipses & Hyperbolas.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Ellipse Notes.
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Hyperbola Last Updated: March 11, 2008.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Unit 1 – Conic Sections Section 1.4 – The Ellipse Calculator Required
Objectives and Vocabulary
9.4 Graph & Write Equations of Ellipses
Conic Sections - Ellipses
Sullivan Algebra and Trigonometry: Section 11.3
Hyperbola Last Updated: October 11, 2005 Jeff Bivin -- LZHS.
Ellipse Last Updated: October 11, 2005.
distance out from center distance up/down from center
Section 10.3 – The Ellipse a > b a – semi-major axis
Hyperbolas Chapter 8 Section 5.
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Warm-Up Write the standard equation for an ellipse with foci at (-5,0) and (5,0) and with a major axis of 18. Sketch the graph.
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
L10-4 Obj: Students will find equations for ellipses and graph ellipses. Ellipse Definition: Each fixed point F is a focus of an ellipse (plural: foci).
What is The equation of an Ellipse
Presentation transcript:

ellipse

Ellipse The set of all co-planar points whose sum of the distances from two fixed points (foci) are constant.

Definition of major and minor axis Ellipse Definition of major and minor axis minor axis major axis

Ellipse major axis minor axis

Definition of vertices Ellipse Definition of vertices and co-vertices co-verticies verticies verticies endpoint of major axis co-verticies endpoint of minor axis

Ellipse a2 = b2 + c2 Distance from center to vertex = a Distance from center to co-vertex = b Distance from center to foci = c b c a Length of major axis = 2a Length of minor axis = 2b a2 = b2 + c2

Ellipse - horizontal a2 = b2 + c2 b c a Distance from center to vertex = a a2 = b2 + c2 Distance from center to co-vertex = b Distance from center to foci = c

Ellipse - vertical a2 = b2 + c2 a c b Distance from center to vertex = a Distance from center to co-vertex = b Distance from center to foci = c

Graph the following Ellipse Center: (2, -3) a = 5 in x direction b = 3 in y direction (2, 0) 3 (2, -3) (-3, -3) (7, -3) 5 5 3 (2, -6)

Graph the following Ellipse a = 5 b = 3 a2 = b2 + c2 52 = 32 + c2 25 = 9 + c2 foci 16 = c2 4 = c (2, 0) 3 (-2, -3) (2, -3) (6, -3) (-3, -3) (7, -3) 5 5 3 (2, -6)

Graph the following Ellipse (-1, 12) Center: (-1, 5) 7 a = 7 in y direction (-1, 5) (-5, 5) (3, 5) 4 4 b = 4 in x direction 7 (-1, -2)

Graph the following Ellipse a = 7 b = 4 a2 = b2 + c2 72 = 42 + c2 49 = 16 + c2 (-1, 12) 33 = c2 foci 7 5.7 = c (-1, 5) (-5, 5) (3, 5) 4 4 7 (-1, -2)

Graph the following Ellipse Center: (-1, -3) a = 3 in x direction b = 2 in y direction (-1, -1) 2 (-1, -3) (-4, -3) (2, -3) 3 3 2 (-1, -5)

Graph the following Ellipse a = 3 b = 2 a2 = b2 + c2 32 = 22 + c2 9 = 4 + c2 foci 5 = c2 (-1, -1) 2.2 = c 2 (-1, -3) (-4, -3) (2, -3) 3 3 2 (-1, -5)

Graph the following Ellipse Center: (-2, 5) a = 9 in y direction b = 6 in x direction (-2, 14) 9 (-2, 5) (-8, 5) (4, 5) 6 6 9 (-2, -4)

Graph the following Ellipse a = 9 b = 6 a2 = b2 + c2 92 = 62 + c2 81 = 36 + c2 (-2, 14) 45 = c2 foci 9 6.7 = c (-2, 5) (-8, 5) (4, 5) 6 6 9 (-2, -4)

Graph the following Ellipse Center: (4, 3) a = 5 in x direction b = 2 in y direction (4, 5) 2 (4, 3) (-1, 3) (9, 3) 5 5 2 (4, 1)

Graph the following Ellipse a = 5 b = 2 a2 = b2 + c2 52 = 22 + c2 25 = 4 + c2 foci 21 = c2 (4, 5) 4.6 = c 2 (4, 3) (-1, 3) (9, 3) 5 5 2 (4, 1)