Multivariate Genetic Analysis

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Bivariate analysis HGEN619 class 2007.
Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
Using MX for SEM analysis. Using Lisrel Analysis of Reader Reliability in Essay Scoring Votaw's Data Tau-Equivalent Model DA NI=4 NO=126 LA ORIGPRT1 WRITCOPY.
The use of Cholesky decomposition in multivariate models of sex-limited genetic and environmental effects Michael C. Neale Virginia Institute for Psychiatric.
Confirmatory Factor Analysis
Structural Equation Modeling
Factor analysis Caroline van Baal March 3 rd 2004, Boulder.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Introduction to Multivariate Analysis Frühling Rijsdijk & Shaun Purcell Twin Workshop 2004.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Multiple raters March 7 th, 2002 Boulder, Colorado John Hewitt.
Heterogeneity Hermine Maes TC19 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Continuous heterogeneity Shaun Purcell Boulder Twin Workshop March 2004.
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Heterogeneity II Danielle Dick, Tim York, Marleen de Moor, Dorret Boomsma Boulder Twin Workshop March 2010.
Univariate Analysis Hermine Maes TC19 March 2006.
Correlations and Copulas Chapter 10 Risk Management and Financial Institutions 2e, Chapter 10, Copyright © John C. Hull
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Phenotypic multivariate analysis. Last 2 days……. 1 P A A C C E E 1/.5 a cecae P.
MathematicalMarketing Slide 2.1 Descriptive Statistics Chapter 2: Descriptive Statistics We will be comparing the univariate and matrix formulae for common.
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Structural Equation Modeling (SEM) With Latent Variables James G. Anderson, Ph.D. Purdue University.
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Heterogeneity Hermine Maes TC21 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
Power and Sample Size Boulder 2004 Benjamin Neale Shaun Purcell.
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
Univariate Analysis Hermine Maes TC21 March 2008.
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Epistasis / Multi-locus Modelling Shaun Purcell, Pak Sham SGDP, IoP, London, UK.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
Linkage in Mx & Merlin Meike Bartels Kate Morley Hermine Maes Based on Posthuma et al., Boulder & Egmond.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Simple and multiple regression analysis in matrix form Least square Beta estimation Beta Simple linear regression Multiple regression with two predictors.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Date of download: 11/13/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Shared Genetic Risk of Major Depression, Alcohol.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Genetic simplex model: practical
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Introduction to Multivariate Genetic Analysis
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
Univariate Analysis HGEN619 class 2006.
Path Analysis Danielle Dick Boulder 2008
Why general modeling framework?
(Re)introduction to Mx Sarah Medland
Matrix Algebra and Random Vectors
Structural Equation Modeling
\nathan\RaterBias.
Getting more from multivariate data: Multiple raters (or ratings)
MANOVA Control of experimentwise error rate (problem of multiple tests). Detection of multivariate vs. univariate differences among groups (multivariate.
Multivariate Genetic Analysis: Introduction
Rater Bias & Sibling Interaction Meike Bartels Boulder 2004
Presentation transcript:

Multivariate Genetic Analysis Boulder 2004

Phenotypic Cholesky T1 P2 F1 F4 P1 P3 P4 F2 F3 1.00

Phenotypic Cholesky T1 P2 F1 F4 P1 P3 P4 F2 F3 1.00

Phenotypic Cholesky T1 P2 F1 F4 P1 P3 P4 F2 F3 1.00

Phenotypic Cholesky T1 P2 F1 F4 P1 P3 P4 F2 F3 1.00

Cholesky Decomposition

Cholesky Example Script: f:\hmaes\a17\chol.mx 3 MRI measures – 2 IQ subtests: var1 = cerebellum var2 = grey matter var3 = white matter var4 = calculation var5 = letters and numbers Data: f:\hmaes\a17\mri-iqfactor.rec T:\hmaes/a17\mri-iq-mz.dat T:\hmaes\a17\mri-iq-dz.dat

Cholesky #define nvar 5 Begin Matrices; X lower nvar nvar Free ! genetic structure Y lower nvar nvar Free ! shared environment structure Z lower nvar nvar Free ! specific environment structure M full 1 nvar Free ! grand means End Matrices; Begin Algebra; A= X*X'; ! additive genetic covariance C= Y*Y'; ! shared environment covariance E= Z*Z'; ! nonshared environment covariance End Algebra;

Standardization Begin Algebra; R=A+C+E; ! total variance S=(\sqrt(I.R))~; ! diagonal matrix of standard deviations P=S*X| S*Y| S*Z; ! standardized estimates End Algebra;

Phenotypic Single Factor 1.00

Residual Variances T1 P2 F1 P1 P3 P4 1.00 E1 E2 E3 E4

Twin Data T1 P2 F1 P1 P3 P4 T2 E1 E2 E3 E4 1.00 ?

Genetic Single Factor T1 P2 A1 P1 P3 P4 T2 E1 E2 E3 E4 1.00 1.0 / 0.5

Single [Common] Factor X: genetic Full 4 x 1 Full nvar x nfac Y: shared environmental Z: specific environmental

Common Environmental Single Factor P2 A1 P1 P3 P4 T2 E1 E2 E3 E4 1.00 1.0 / 0.5 C1

Specific Environmental Single Factor 1.00 1.0 / 0.5 C1

Residuals partitioned in ACE 1.00 1.0 / 0.5

Residual Factors T: genetic U: shared environmental V: specific environmental Diag 4 x 4 Diag nvar x nvar

Independent Pathway Model C A E P1 P3 P4 T2 A1 A2 A3 A4 E1 E2 E3 E4 C1 1.00 1.00 / 0.50 [X] [Y] [Z] [T] [V] [U]

Independent Pathway Example Script: f:\hmaes\a17\ind3f.mx 3 MRI measures – 2 IQ subtests: var1 = cerebellum var2 = grey matter var3 = white matter var4 = calculation var5 = letters and numbers Data: f:\hmaes\a17\mri-iqfactor.rec T:\hmaes/a17\mri-iq-mz.dat T:\hmaes\a17\mri-iq-dz.dat

Independent Pathway #define nvar 5 #define nfac 1 G1: Define matrices Calculation Begin Matrices; X full nvar 3 ! common factor genetic paths Y full nvar nfac ! common factor shared env paths Z full nvar nfac Free ! common factor specific env paths T diag nvar nvar Free ! variable specific genetic paths U diag nvar nvar ! variable specific shared env paths V diag nvar nvar Free ! variable specific residual paths M full 1 nvar Free ! grand means End Matrices;

Three Genetic Factors Specify X ! declare free parameters for 3 genetic common factors ! G1 G2 G3 100 110 0 101 111 0 102 112 0 103 0 120 104 0 121 Drop T 1 5 5 ! fix genetic specific for last variable for identification

Three Genetic Factors CB GM WM RK CL 1.00 A1 A2 A3 AS1 AS2 AS3 AS4 AS5

Independent II Begin Algebra; A= X*X' + T*T'; ! additive genetic covariance C= Y*Y' + U*U'; ! shared environment covariance E= Z*Z' + V*V'; ! specific environment covariance End Algebra; R=A+C+E; ! total variance S=(\sqrt(I.R))~; ! diagonal matrix of standard deviations P=S*X| S*Y| S*Z| \d2v(S*T)'| \d2v(S*U)'| \d2v(S*V)'; ! standardized estimates for common and specific factors \d2v : diagonal to vector

Path Diagram to Matrices Variance Component a2 c2 e2 Common Factors [X]full 5 x 1 [Y]full [Z]full Residual Factors [T]diag 5 x 5 [U]diag [V]diag #define nvar 5 #define nfac 1

Path Diagram to Matrices Variance Component a2 c2 e2 Common Factors [X]full 5 x 3 [Y] [Z]full 5 x 1 Residual Factors [T]diag 5 x 5 [U] [V]diag #define nvar 5 #define nfac 1

Phenotypic Single Factor 1.00

Latent Phenotype T1 P2 A P1 P3 P4 T2 C F1 1.00 1.0 / 0.5 E

Factor on Latent Phenotype

Common Pathway Model T1 P2 C A E P1 P3 P4 T2 A1 A2 A3 A4 E1 E2 E3 E4 L 1.00 1.00 / 0.50 [T] [V] constraint [X] [Y] [Z] [F] [U]

Common Pathway Example Script: f:\hmaes\a17\comp.mx 3 MRI measures – 2 IQ subtests: var1 = cerebellum var2 = grey matter var3 = white matter var4 = calculation var5 = letters and numbers Data: f:\hmaes\a17\mri-iqfactor.rec T:\hmaes/a17\mri-iq-mz.dat T:\hmaes\a17\mri-iq-dz.dat

Compath Pathway #define nvar 5 #define nfac 1 Begin Matrices; X full nfac nfac Free ! latent factor genetic paths Y full nfac nfac ! latent factor shared env paths Z full nfac nfac Free ! latent factor specific env paths T diag nvar nvar Free ! variable specific genetic paths U diag nvar nvar ! variable specific shared env paths V diag nvar nvar Free ! variable specific residual paths F full nvar nfac Free ! loadings on latent factor M full 1 nvar Free ! grand means End Matrices;

Compath II Begin Algebra; A= F&(X*X') + T*T'; ! genetic variance components C= F&(Y*Y') + U*U'; ! shared environment covariance E= F&(Z*Z') + V*V'; ! specific environment covariance L= X*X' + Y*Y' + Z*Z'; ! variance of latent factor End Algebra; R=A+C+E; ! total variance S=(\sqrt(D.R))~; ! diagonal matrix of standard deviations P=S*F| \d2v(S*T)'| \d2v(S*U)'| \d2v(S*V)'; ! standardized estimates for loadings and specific factors W= X*X' | Y*Y'| Z*Z'; ! standardized estimates for latent phenotype

Path Diagram to Matrices Variance Component a2 c2 e2 Common Factor [X]full 1 x 1 [Y]full [Z]full [F]full 5 x 1 Residual Factors [T]diag 5 x 5 [U]diag [V]diag #define nvar 5 #define nfac 1

Path Diagram to Matrices Variance Component a2 c2 e2 Common Factor [X]full 1 x 1 [Y] [Z]full [F]full 5 x 1 Residual Factors [T]diag 5 x 5 [U] [V]diag #define nvar 5 #define nfac 1

Summary Independent Pathway Model Common Pathway Model Biometric Factors Model Loadings differ for genetic and environmental common factors Common Pathway Model Psychometric Factors Model Loadings equal for genetic and environmental common factor