Benzene and Aromaticity

Slides:



Advertisements
Similar presentations
15. Benzene and Aromaticity
Advertisements

Arenes and Aromaticity (Benzene). 140 pm All C—C bond distances = 140 pm Benzene empirical formula = CH.
CHE 242 Unit VI The Study of Conjugated Systems, Aromaticity, and Reactions of Aromatic Compounds CHAPTER SIXTEEN Terrence P. Sherlock Burlington County.
Case Western Reserve University
15. Benzene and Aromaticity
Heterocyclic Chemistry
245 Chapter 11: Arenes and Aromaticity 11.1: Benzene - C 6 H : Kekulé and the Structure of Benzene Kekule benzene: two forms are in rapid equilibrium.
Aromaticity Dr. A.K.M. Shafiqul Islam
1 (2 August 2002, Kansas) Police said an Olathe man was struck and killed by a train after his vehicle broke down on Interstate 35. His attempts at repairing.
Chapter 16 Lecture Aromatic Compounds Organic Chemistry, 8 th Edition L. G. Wade, Jr.
Benzene animations This resembles the ideas of Kekule who saw benzene as cyclohexatriene.
© 2011 Pearson Education, Inc. 1 Chapter 15 Aromaticity Reactions of Benzene Organic Chemistry 6 th Edition Paula Yurkanis Bruice.
9-1 © 2005 John Wiley & Sons, Inc. All rights reserved Chapter 9: Benzene and its Derivatives.
Aromatic Hydrocarbons Introduction Kekule proposed the structure of benzene Resonance Theory The Stability of Benzene The Criteria for Aromaticity—Hückel’s.
1 Aromatic Compounds Aromatic was used to described some fragrant compounds in early 19 th century but are now grouped by chemical behavior (unsaturated.
Chapter 15 Benzene and Aromaticity
AROMATIC COMPOUNDS Dr. Sheppard CHEM 2412 Summer 2015 Klein (2 nd ed.) sections: 18.1, 18.2, 18.8, 18.3, 18.4, 18.5.
15. Benzene and Aromaticity
Chapter 15: Benzene and Aromaticity. 2 Aromatic Compounds Aromatic was used to described some fragrant compounds in early 19 th century –Not correct:
11111 Spring 2009Dr. Halligan CHM 236 Benzene and Aromatic Compounds Chapter 17.
Aromatic Compounds - Benzene & Its Family - Nanoplasmonic Research Group Organic Chemistry Chapter 4 Part I.
Multiple-Center MO Theory Like all MOs, the following general rules apply to multiple-center MOs:
Benzene and Aromaticity
Substituents on Slide 25. The Phenyl Group When a benzene ring is a substituent, the term phenyl is used (for C 6 H 5  ) –You may also see “Ph” or “
Organic Chemistry Aromatic compounds.
1 CH 15: Benzene and Aromaticity Renee Y. Becker Valencia Community College CHM 2211C.
11.18 Cyclobutadiene and Cyclooctatetraene
Polycyclic Aromatic Hydrocarbons
Aromatic compounds Dr AKM Shafiqul Islam. hydrocarbons aliphaticaromatic alkanes alkenes alkynes Aromaticity.
Chapter 5, Part 1: Benzene and Aromaticity Based on McMurry’s Organic Chemistry, 6 th edition.
Chapter 15 Benzene and Aromaticity
Benzene & Aromaticity Course Teacher Ashis Kumar Podder.
Aromaticity: Reactions of Benzene and Substituted Benzenes
15. Benzene and Aromaticity Based on McMurry’s Organic Chemistry, 6 th edition ©2003 Ronald Kluger Department of Chemistry University of Toronto.
1 Benzene and Aromatic Compounds. 2 Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making.

Benzene and Aromaticity
Reactions of Arenes 1.
Aromatic Compounds 15.7 Introduction to Aromatic Compounds.
Chemistry Department, College of Science, King Saud University
Chapter 5 Aromatic Compounds
CH 15: Benzene and Aromaticity
Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.
Chapter 15 Benzene and Aromaticity
Chapter 14 Aromatic Compounds
Organic Chemistry, First Edition Janice Gorzynski Smith
Benzene and Aromaticity
(2 August 2002, Kansas) Police said an Olathe man was struck and killed by a train after his vehicle broke down on Interstate 35. His attempts at repairing.
Chapter 9: Benzene and its Derivatives
Chapter 15 Benzene and Aromaticity
History of Benzene.
15. Benzene and Aromaticity
CH 15: Benzene and Aromaticity
Benzene and Aromaticity
15. Benzene and Aromaticity
CH 14-2 Characteristics of Benzene
Figure Number: 15-00CO Title: Molecules of Some Simple Aromatic Compounds Caption: Potential maps of molecules of benzene, pyrrole, and pyridine. Notes:
Fundamentals of Organic Chemistry
Benzene and Aromatic Compounds
Benzene and Aromatic Compounds
Chapter 16 Aromatic Compounds
Aromaticity of Benzenoid and Non-benzenoid compounds
Molar Heats of Hydrogenation
Fundamentals of Organic Chemistry
Heat evolved upon catalytic hydrogenation (DHo)
Fundamentals of Organic Chemistry
M.Sc. II S.M. Joshi Reactivity of Five Membered Heterocyclic Rings
Chapter 15 Benzene and Aromaticity
Presentation transcript:

Benzene and Aromaticity Rayat Shikshan Sanstha's Benzene and Aromaticity M.Sc. Monika D. Shelake Assistant Professor Department of Chemistry, S. M. Joshi College, Hadapsar

Aromatic Compounds Aromatic was used to described some fragrant compounds in early 19th century Not correct: later they are grouped by chemical behavior (unsaturated compounds that undergo substitution rather than addition) Current: distinguished from aliphatic compounds by electronic configuration

Aromaticity and the Hückel 4n+2 Rule Unusually stable - heat of hydrogenation 150 kJ/mol less negative than a cyclic triene Planar hexagon: bond angles are 120°, carbon–carbon bond lengths 139 pm Undergoes substitution rather than electrophilic addition Resonance hybrid with structure between two line-bond structures Huckel’s rule, based on calculations – a planar cyclic molecule with alternating double and single bonds has aromatic stability if it has 4n+ 2  electrons (n is 0,1,2,3,4) For n=1: 4n+2 = 6; benzene is stable and the electrons are delocalized

Compounds With 4n  Electrons Are Not Aromatic (May be Antiaromatic) Planar, cyclic molecules with 4 n  electrons are much less stable than expected (antiaromatic) They will distort out of plane and behave like ordinary alkenes 4- and 8-electron compounds are not delocalized (single and double bonds) Cyclobutadiene is so unstable that it dimerizes by a self-Diels-Alder reaction at low temperature Cyclooctatetraene has four double bonds, reacting with Br2, KMnO4, and HCl as if it were four alkenes

Aromatic Ions The 4n + 2 rule applies to ions as well as neutral species Both the cyclopentadienyl anion and the cycloheptatrienyl cation are aromatic The key feature of both is that they contain 6  electrons in a ring of continuous p orbitals

Aromaticity of the Cyclopentadienyl Anion 1,3-Cyclopentadiene contains conjugated double bonds joined by a CH2 that blocks delocalization Removal of H+ at the CH2 produces a cyclic 6-electron system, which is stable Removal of H- or H• generates nonaromatic 4 and 5 electron systems Relatively acidic (pKa = 16) because the anion is stable

Aromatic Heterocycles: Pyridine and Pyrrole Heterocyclic compounds contain elements other than carbon in a ring, such as N,S,O,P Aromatic compounds can have elements other than carbon in the ring There are many heterocyclic aromatic compounds and many are very common Cyclic compounds that contain only carbon are called carbocycles (not homocycles) Nomenclature is specialized

Pyrrole A five-membered heterocycle with one nitrogen  electron system similar to that of cyclopentadienyl anion Four sp2-hybridized carbons with 4 p orbitals perpendicular to the ring and 4 p electrons Nitrogen atom is sp2-hybridized, and lone pair of electrons occupies a p orbital (6  electrons) Since lone pair electrons are in the aromatic ring, protonation destroys aromaticity, making pyrrole a very weak base

Pyridine A six-membered heterocycle with a nitrogen atom in its ring  electron structure resembles benzene (6 electrons) The nitrogen lone pair electrons are not part of the aromatic system (perpendicular orbital) Pyridine is a relatively weak base compared to normal amines but protonation does not affect aromaticity

Why 4n +2? When electrons fill the various molecular orbitals, it takes two electrons (one pair) to fill the lowest-lying orbital and four electrons (two pairs) to fill each of n succeeding energy levels This is a total of 4n + 2

Polycyclic Aromatic Compounds Aromatic compounds can have rings that share a set of carbon atoms (fused rings) Compounds from fused benzene or aromatic heterocycle rings are themselves aromatic

Thank You