Instrument operation update (NO science)

Slides:



Advertisements
Similar presentations
Misura del vapor dacqua in atmosfera mediante Lidar Raman F.Congeduti, P.DAulerio, T.Colavitto, P.Sanò, F.Cardillo (CNR, Istituto di Scienze dellAtmosfera.
Advertisements

(Program Director: George Komar)
ESTO Advanced Component Technology 11/17/03 Laser Sounder for Remotely Measuring Atmospheric CO 2 Concentrations GSFC CO 2 Science and Sounder.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Calibration for LHAASO_WFCTA Yong Zhang, LL Ma on behalf of the LHAASO collaboration 32 nd International Cosmic Ray Conference, Beijing 2011.
Centro de Investigaciones en Láseres y Aplicaciones (LASER RESEARCH CENTER AND APPLICATIONS ) (CITEFA-CONICET) Buenos Aires - Argentina Collaboration between.
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
1 Development of Any Frequency Fire Rate SLR Control System Cunbo FAN, Xue DONG, Xingwei HAN, You ZHAO Changchun Observatory, , China.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
Atmospheric Measurements at Capel Dewi field station Prof. Geraint Vaughan.
TReSS (Transportable Remote Sensing Station) in Tamanrasset Overview of TReSS Status of implementation on April 1 st 2006 Operations in the framework of.
LIDAR network F.Fierli, C. Flamant, F. Cairo. Scientific Task for SOP ● provide the aerosol content before convection episodes to improve the estimate.
Scanning Raman Lidar Error Characteristics and Calibration For IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata,
LIDAR Light Detection and Ranging Kate Whalen PHY 3903 Nov. 25, 2005.
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC
Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale.
LIDAR: Introduction to selected topics
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Introduction A new methodology is developed for integrating complementary ground-based data sources to provide consistent ozone vertical distribution time.
Herman G.J. Smit/FZJ-COST723-WG-I Overview Noordwijk March 2004 COST723-WG1- Working Group I: Data and Measurement Techniques Overview Herman G.J.
GEWEX/GlobVapour Workshop, Mar 8-10, 2011, ESRIN, Frascati, Italy WATER VAPOUR RAMAN LIDARS IN THE UTLS: Where Are We Now? or “The JPL-Table Mountain Experience”
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
FLEX-US 2013 Airborne Campaign
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Second GALION Workshop, WMO, Geneva, 20 ‐ 23 September 2010 A d v a n c e d L I D A R S y s t e m s Established in Athens, Greece in 2002 COMPANY SCOPE.
Automatic Operation of Lidar Systems at Remote Sites – Polly NET – Dietrich Althausen, Ronny Engelmann, Holger Baars, Birgit Heese, Thomas Kanitz, Detlef.
SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique Martial Haeffelin SIRTA Coordinator CLOUDNET Meeting, Paris May 2002.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
Micro-Pulse Lidar (MPL)
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
Cabauw Experimental Site for Atmospheric Research - CESAR - Henk Klein Baltink Atmospheric Research Section.
Determination of atmospheric structures, aerosol optical properties and particle type with the R-MAN 510 Raman dual polarization lidar super ceilometer.
Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based Measurements and Campaign Database Subgroup Comparisons with GOMOS air-density.
GSFC STROZ Lidar at MOHAVE 2009 Laurence Twigg, Thomas J. McGee and Grant Sumnicht Code 613.3, Goddard Space Flight Center MOHAVE 2009 Water Vapor Workshop.
Proprietary Meeting of the Working Group on Space-Based Lidar Winds Sedona, Arizona February 2004 GroundWinds New Hampshire and Hawaii Updates.
HOLOGRAPHIC SCANNING LIDAR TELESCOPES Geary K. Schwemmer Laboratory For Atmospheres NASA Goddard Space Flight Center
Geoscience Laser Altimeter System Aerosol and Cloud Observations by the GLAS Polar Orbiting Lidar Instrument NASA - Goddard Space Flight Center Launched.
Monitoring of Eyjafjallajökull Ash Layer Evolution over Payerne- Switzerland with a Raman Lidar Todor Dinoev, Valentin Simeonov*, and Mark Parlange Swiss.
LIDAR Atmospheric Remote Sensing Junior Nkrumah Prof. Ben Herman Dept. of Engineering, CCNY Abstract Experimental setup Procedure Materials Results Discussion.
A new method for first-principles calibration
Atmospheric Measurements: The Next Generation Laser Remote Sensor Russell Philbrick and Hans Hallen Physics Department and MEAS Department, NC State University,
CO 2 an important driver for climate change. Currently only approximately half of the CO 2 produced by man can be accounted for in the atmosphere and oceans,
From science to routine operations – Ceilometer and Lidar networks for cloud and aerosol detection WMO TECO October 2012 W. Thomas Deutscher Wetterdienst.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
George Avdikos, PhD Raymetrics S.A. 1. Executive Summary 2  Founded in Athens, Greece in 2002  Mainly professionals with extensive experience and postgraduate.
METR Advanced Atmospheric Radiation Dave Turner Lecture 11.
Status of IFAE/UAB Raman LIDAR Lluís Font and Markus Gaug UAB & CERES-IEEC Central Calibration Facilities meeting Barcelona June 2016.
Winter Boundary Layer Experiment
Goal meeting : to inform each other about on-going/up-coming work related to CO TROPOMI to see if more/stronger collaboration is possible/needed to plan.
Latmos UPMC/CNRS - ILRC 2015
Tuning the retrieval: treat or cheat Klemens Hocke, Simone Studer
Regional Radiation Center (RRC) II (Asia)
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
The New Readout Electronics for the SLAC Focusing DIRC Prototype (SLAC experiment T-492 ) L. L. Ruckman, G. S. Varner Instrumentation Development Laboratory.
Validation of airborne 1
The European network of automatic lidars and ceilometers E-PROFILE
Payerne station operations
Eureka Stratospheric Ozone Differential Absorption LIDAR:
An (almost) unexpected way to detect very thin diffuse (aged
New automation capability of the NDACC/TOLNet tropospheric
JPL Table Mountain Facility (TMF)
Thule (Greenland) 76.5°N °W
GSFC Mobile Lidar Station Report T. McGee, J. Sullivan
Eureka Stratospheric Ozone Differential Absorption LIDAR revived
Report on the atmospheric lidar observatory in McMurdo and Dome C
Lauder Aerosol Lidar 2018 report Ben Liley – NIWA, New Zealand
NDACC Lidar measurements at OHP
Presentation transcript:

Instrument operation update (NO science) RMR Rome – Tor Vergata NDACC station G.L. Liberti1, D. Dionisi1, F. Congeduti1*, F. Cardillo1* 1Institute of atmospheric science and climate (ISAC-CNR) *Retired Instrument operation update (NO science) Rome-Tor Vergata 41.8°N 12.6°E . 106 aslm 10 MAY 2018, NDACC Lidar Working Group, Huntsville

Rome Tor vergata Instrument operation update NDACC-configuration/protocol Measurement activities: NDACC: measurement in stand-by due to lack of human and financial resources! - Aerosol profiles ( 0.2 - 25 km) - Water vapor profiles (0.5 - 15 km) - Temperature profiles (25 - 80 km) EARLINET (since 2016/06) 180’ acquisitions twice a week (Monday, Thursday) at sunset, 120’ acquisitions per week at local noon (Monday). - Aerosol profiles ( 0.2 - 8 km) - Water vapor profiles (0.5 - 5 km) Earlinet-configuration/protocol 10 MAY 2018, NDACC Lidar Working Group, Huntsville

Networking & Projects: Rome Tor vergata Instrument operation update On-going activities: -Laser maintenance (done in October 2017) - Upload the HDF and ASCII water vapor measurements (2003-2010) to the NDACC archive - Upgrade of the RMR system hardware: 1) addition of cross and co-polarized tropospheric channels at 532 nm; 2) addition of tropospheric channel at 1064 nm - Upgrade of the RMR system software: 1) Remote control of the laser 2) Remote control of the sliding roof 3) Development of an automated alignment procedure 4) Development of WV+aerosol all at once inversion procedure Networking & Projects: - EMERGE (Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales) measurement campaigns - Submitted H2020 proposal (FILIA project, P.I. T. Trickl) - June 2016: EARLINET/ACTRIS affiliation for the tropospheric aerosol product - Accepted ESA proposal (ID 3881) as an EARTHCARE CAL/VAL site - Submitted ESA proposal as a SENTINEL 5-p CAL/VAL site Objective 2019/01: return to normal NDACC activity 300’-500’ night-time acquisitions once a week 10 MAY 2018, NDACC Lidar Working Group, Huntsville

Scientific Production: Rome Tor vergata Instrument operation update Scientific Production: Liberti, G.L., D. Dionisi, F. Congeduti, A. Di Monte, 2018. Dead-Time Variables Estimation and Correction. ELC2018, 2 pp. Liberti G.L., D. Dionisi, F. Cheruy, C.Risi. 2018. Feasibility study to measure HDO/H2O atmospheric profiles through a Raman lidar. ILRC28 EPJ Web of Conferences 176, 05032. 4 pp Dionisi, D., A.M.Iannarelli, A.Scoccione, G.L.Liberti, M.Cacciani, S.Argentini, L.Baldini, F.Barnaba, M.Campanelli, G.Casasanta, H.Diémoz, L.Di Liberto, G.P.Gobbi, I.Petenko, A.M.Siani, J.Von Bismarck, S.Casadio, 2018. Water vapor and aerosol lidar measurements within an Atmospheric instrumental super site to study the aerosols and the tropospheric trace gases in Rome. ILRC28 EPJ Web of Conferences 176, 05050 4 pp https://doi.org/10.1051/epjconf/201817605050 Proestakis,E. V.Amiridis, M.Kottas, E.Marinou, I.Binietoglou, A.Ansmann, U.Wandinger, J.Yorks, E. Nowottnick, A.Papayannis, A.Pietruczuk, A.Apituley, C.Muñoz-Porcar, D.Bortoli, D.Dionisi, D.Mamali, D.Balis, D.Nicolae, G.L.Liberti, H.Baars, K-A.Voudouri, L.Mona, M.Mylonaki, M.R.Perrone, M.J.Costa, M.Sicard, N.Papagiannopoulos, N.Siomos, P.Burlizzi, R.Engelmann, J.Hofer, G. Pappalardo, 2018. EARLINET Validation of CATS L2 Product. ILRC28 EPJ Web of Conferences 176, 02005 5 pp https://doi.org/10.1051/epjconf/201817602005 Liberti,G.L., D.Dionisi, S.Federico, F.Congeduti, 2016. Multiwavelength lidar observation of the atmospheric response to the 20th March 2015 partial solar eclipse in Rome Tor Vergata: preliminary results. ILRC27. EPJ Web of Conferences 119 15003 4 pp., https://doi.org/10.1051/epjconf/201611915003. 10 MAY 2018, NDACC Lidar Working Group, Huntsville

Thank you for your attention Rome Tor vergata Instrument operation update Thank you for your attention 10 MAY 2018, NDACC Lidar Working Group, Huntsville

Rome Tor vergata Instrument CONFIGURATION Instrumental characteristics TRANSMITTER Laser Nd:YAG Continuum Powerlite 8010 2 beams: 532 nm, 355 nm Energy: 200 mJ, 400 mJ Pulse repetition rate: 10 Hz Pulse duration: 7 ns Beam diameter: 45 mm Beam divergence: 0.1 mrad RECEIVER Collector 1 newtonian array Diameter: 9*500 mm F-number: F3 FOV : 0.6 mrad Collector 2 single newtonian Diameter:300mm F-number: F3 FOV : 0.9 mrad Collector 3 single newtonian Diameter: 150 mm F-number: F3 FOV: 1.8 mrad SAMPLING Range: ~100 m÷75 km Δt: Standard 1’ (600 profiles) Δz: Standard 75 m - 7.5 m DATA ACQUISITION Raman UT 387 nm channels: 407 nm Elastic (T): 532 nm Raman LT 387 nm channels: 407 nm Elastic 355 nm (UTLS): 532 nm Elastic: 532 nm (PBL, LT) NDACC WV DATASET -Archived hours of measurements: 690/1232 - More than 90% of the WV night-time sessions have been calibrated (68% of the total dataset) For each photo-detection channel Photon-counting: 200 MHz Bandwidth 500 ns max. resolution ADC: 12 bit, 20 Msample/s 10 MAY 2018, NDACC Lidar Working Group, Huntsville