Signal flow within the system.

Slides:



Advertisements
Similar presentations
Demonstrations I, II, and III.
Advertisements

Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
Degradation of MSP samples in 37°C DPBS solution.
Comparison of predicted and measured forces and moments.
Basic design concept of human mimetic humanoid.
TPAD controller schematic and testing for WPC.
TPAD controller performance for three force components.
Demonstration of high-speed and precise actuation.
Three different types of transfer functions with a codomain of [0,1].
TPAD training protocol.
Force-strain characteristics of Peano-HASEL actuators using hydrogel and aluminum electrodes. Force-strain characteristics of Peano-HASEL actuators using.
Self-sensing of actuator position.
Invisible Peano-HASEL actuators.
Workspace comparison of Delta robots.
Group data during free walking between sessions 1 and 16.
Distribution of the number of collisions and the average closest-neighbor distance as a function of communication range and delay. Distribution of the.
Visual explanation of the interaction terms.
Results of the performance study experiment: Compression (sample size: n = 5). Results of the performance study experiment: Compression (sample size: n.
Visual explanation of the interaction terms.
Power-free sterilization of culture plate.
The foldable robotic arm with seven modules assembled in series.
Allometric scaling of select biohybrid and organic devices.
Details of the soft, bistable valve.
Prosthesis grasping and control.
A novice user executing various subtasks from study 1.
A shared-control method for effective bimanual robot manipulation.
Tukey boxplots overlaid on data points from objective and subjective measures, displaying results from study 1. Tukey boxplots overlaid on data points.
Tactile features for prosthesis perception.
The milliDelta: a millimeter-scale Delta robot.
Quasi-static and dynamic trajectories.
Online verification using reachable occupancies.
Cell viability tests. Cell viability tests. SEM images of (A) MC3T3-E1 cells and (B) MSCs on days 1, 3, and 5 of culture. (C) Survival rates of MC3T3-E1.
Experimental results for tremor reduction.
Prosthesis system diagram.
The foldable robotic arm enabled UAVs to perform tasks that could not be performed otherwise. The foldable robotic arm enabled UAVs to perform tasks that.
SoFi system overview. SoFi system overview. (Top, left to right) Soft robotic fish and diver interface module. (Bottom, left to right) Subcomponents of.
A summary of different energy sources for robotics.
Self-sensing of actuator position.
2D motility characterization and external magnetic steering of RBC microswimmers. 2D motility characterization and external magnetic steering of RBC microswimmers.
Fig. 1 Map of water stress and shale plays.
Brain-computer interfaces.
Experimental setup for workspace, bandwidth, and force characterization of the milliDelta. Experimental setup for workspace, bandwidth, and force characterization.
Active deformation of an RBC cargo propelled and pushed by a single bacterium through a 2-μm gap. Active deformation of an RBC cargo propelled and pushed.
Untethered kirigami-skinned soft crawlers.
Force-strain characteristics of Peano-HASEL actuators using hydrogel and aluminum electrodes. Force-strain characteristics of Peano-HASEL actuators using.
Degradation of MSP samples in 37°C DPBS solution.
Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
Results of the performance study experiment: Bending (sample size: n = 5). Results of the performance study experiment: Bending (sample size: n = 5). (A)
Underwater observatory.
Foldable module with locking mechanism.
Simulation results of magnetic driving ability in hepatic artery, portal vein, and hepatic vein. Simulation results of magnetic driving ability in hepatic.
Comparison of predicted and measured forces and moments.
In vitro cell-release experiments on a glass substrate.
Overhead snapshots. Overhead snapshots. (A to E) Mark I3, robot experiments (movie S1). (F) Mark I3, simulation (movie S2, side by side with a run on the.
Results of a representative participant with multiple training sessions. Results of a representative participant with multiple training sessions. Average.
Galloping-like gait with the design of a two-legged robot.
AEGIS autonomous targeting process.
Examples of organic sensing in robotics.
Fig. 2 Images of the optical field at transmitter and receiver.
Kinematic and mechanical advantage trade-off study.
The biomimetic pressure sensing ability.
Iron line orientation inside the PDMS matrix.
Floating microrobots with different preferred magnetization directions: Fabrication and control principles. Floating microrobots with different preferred.
Breakdown of incorrect participant responses.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Robot-assisted intervention system.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Comparison of children’s behavior between the three conditions.
Setup used in the study. Setup used in the study. A child interacts with the robot tutor with a large touchscreen sitting between them, displaying the.
Fig. 2 Time series of secularization versus GDP per capita, from four illustrative countries, over the 20th century. Time series of secularization versus.
Presentation transcript:

Signal flow within the system. Signal flow within the system. The command flow from a human diver to the robot. The diver sends acoustic commands such as thrust, left/right, and up/down as well as camera modes from the transmitter within the diver interface module. The analog signal travels several meters underwater and is then amplified by the receiver and parsed by the microcontroller. The microcontroller adjusts the pump speed, the dive plane position, the BCU, and the mode of the camera. Robert K. Katzschmann et al. Sci. Robotics 2018;3:eaar3449 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works