Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants For the Discovery Video Space Plants, go to Animation and Video Files. © 2011 Pearson Education, Inc.
Figure 9.1 Figure 9.1 How do these leaves power the work of life for this chimpanzee?
Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O2 and organic molecules, which are used in cellular respiration Cells use chemical energy stored in organic molecules to regenerate ATP, which powers work © 2011 Pearson Education, Inc.
Photosynthesis in chloroplasts Cellular respiration in mitochondria Figure 9.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts O2 Organic molecules CO2 H2O Cellular respiration in mitochondria Figure 9.2 Energy flow and chemical recycling in ecosystems. ATP powers most cellular work ATP Heat energy
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways © 2011 Pearson Education, Inc.
Catabolic Pathways and Production of ATP The breakdown of organic molecules is exergonic Fermentation is a partial degradation of sugars that occurs without O2 Aerobic respiration consumes organic molecules and O2 and yields ATP Anaerobic respiration is similar to aerobic respiration but consumes compounds other than O2 © 2011 Pearson Education, Inc.
C6H12O6 + 6 O2 6 CO2 + 6 H2O + Energy (ATP + heat) Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to aerobic respiration Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular respiration with the sugar glucose C6H12O6 + 6 O2 6 CO2 + 6 H2O + Energy (ATP + heat) © 2011 Pearson Education, Inc.
Redox Reactions: Oxidation and Reduction The transfer of electrons during chemical reactions releases energy stored in organic molecules This released energy is ultimately used to synthesize ATP © 2011 Pearson Education, Inc.
The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation-reduction reactions, or redox reactions In oxidation, a substance loses electrons, or is oxidized In reduction, a substance gains electrons, or is reduced (the amount of positive charge is reduced) © 2011 Pearson Education, Inc.
becomes oxidized (loses electron) becomes reduced (gains electron) Figure 9.UN01 becomes oxidized (loses electron) becomes reduced (gains electron) Figure 9.UN01 In-text figure, p. 164
becomes oxidized becomes reduced Figure 9.UN02 becomes oxidized becomes reduced Figure 9.UN02 In-text figure, p. 164
The electron donor is called the reducing agent The electron receptor is called the oxidizing agent Some redox reactions do not transfer electrons but change the electron sharing in covalent bonds An example is the reaction between methane and O2 © 2011 Pearson Education, Inc.
Methane (reducing agent) Oxygen (oxidizing agent) Figure 9.3 Reactants Products becomes oxidized Energy becomes reduced Figure 9.3 Methane combustion as an energy-yielding redox reaction. Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water
Oxidation of Organic Fuel Molecules During Cellular Respiration During cellular respiration, the fuel (such as glucose) is oxidized, and O2 is reduced © 2011 Pearson Education, Inc.
becomes oxidized becomes reduced Figure 9.UN03 becomes oxidized becomes reduced Figure 9.UN03 In-text figure, p. 165
Stepwise Energy Harvest via NAD+ and the Electron Transport Chain In cellular respiration, glucose and other organic molecules are broken down in a series of steps Electrons from organic compounds are usually first transferred to NAD+, a coenzyme As an electron acceptor, NAD+ functions as an oxidizing agent during cellular respiration Each NADH (the reduced form of NAD+) represents stored energy that is tapped to synthesize ATP © 2011 Pearson Education, Inc.
Figure 9.4 NAD NADH Dehydrogenase Reduction of NAD (from food) Oxidation of NADH Nicotinamide (oxidized form) Nicotinamide (reduced form) Figure 9.4 NAD as an electron shuttle.
Figure 9.UN04 Dehydrogenase Figure 9.UN04 In-text figure, p. 166
NADH passes the electrons to the electron transport chain Unlike an uncontrolled reaction, the electron transport chain passes electrons in a series of steps instead of one explosive reaction O2 pulls electrons down the chain in an energy-yielding tumble The energy yielded is used to regenerate ATP © 2011 Pearson Education, Inc.
Controlled release of energy for synthesis of ATP Figure 9.5 H2 1/2 O2 2 H 1/2 O2 (from food via NADH) Controlled release of energy for synthesis of ATP 2 H+ 2 e ATP Explosive release of heat and light energy ATP Electron transport chain Free energy, G Free energy, G ATP 2 e Figure 9.5 An introduction to electron transport chains. 1/2 O2 2 H+ H2O H2O (a) Uncontrolled reaction (b) Cellular respiration
The Stages of Cellular Respiration: A Preview Harvesting of energy from glucose has three stages Glycolysis (breaks down glucose into two molecules of pyruvate) The citric acid cycle (completes the breakdown of glucose) Oxidative phosphorylation (accounts for most of the ATP synthesis) © 2011 Pearson Education, Inc.
Glycolysis (color-coded teal throughout the chapter) 1. Figure 9.UN05 Glycolysis (color-coded teal throughout the chapter) 1. Pyruvate oxidation and the citric acid cycle (color-coded salmon) 2. Oxidative phosphorylation: electron transport and chemiosmosis (color-coded violet) 3. Figure 9.UN05 In-text figure, p. 167
Electrons carried via NADH Substrate-level phosphorylation Figure 9.6-1 Electrons carried via NADH Glycolysis Glucose Pyruvate CYTOSOL MITOCHONDRION Figure 9.6 An overview of cellular respiration. ATP Substrate-level phosphorylation
Electrons carried via NADH Electrons carried via NADH and FADH2 Figure 9.6-2 Electrons carried via NADH Electrons carried via NADH and FADH2 Pyruvate oxidation Glycolysis Citric acid cycle Glucose Pyruvate Acetyl CoA CYTOSOL MITOCHONDRION Figure 9.6 An overview of cellular respiration. ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation
Electrons carried via NADH Electrons carried via NADH and FADH2 Figure 9.6-3 Electrons carried via NADH Electrons carried via NADH and FADH2 Oxidative phosphorylation: electron transport and chemiosmosis Pyruvate oxidation Glycolysis Citric acid cycle Glucose Pyruvate Acetyl CoA CYTOSOL MITOCHONDRION Figure 9.6 An overview of cellular respiration. ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation
The process that generates most of the ATP is called oxidative phosphorylation because it is powered by redox reactions © 2011 Pearson Education, Inc.
BioFlix: Cellular Respiration © 2011 Pearson Education, Inc. 28
Oxidative phosphorylation accounts for almost 90% of the ATP generated by cellular respiration A smaller amount of ATP is formed in glycolysis and the citric acid cycle by substrate-level phosphorylation For each molecule of glucose degraded to CO2 and water by respiration, the cell makes up to 32 molecules of ATP © 2011 Pearson Education, Inc.
Enzyme Enzyme ADP P Substrate ATP Product Figure 9.7 Figure 9.7 Substrate-level phosphorylation. Product
Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases Energy investment phase Energy payoff phase Glycolysis occurs whether or not O2 is present © 2011 Pearson Education, Inc.
Energy Investment Phase Figure 9.8 Energy Investment Phase Glucose 2 ADP 2 P 2 ATP used Energy Payoff Phase 4 ADP 4 P 4 ATP formed 2 NAD+ 4 e 4 H+ 2 NADH 2 H+ Figure 9.8 The energy input and output of glycolysis. 2 Pyruvate 2 H2O Net Glucose 2 Pyruvate 2 H2O 4 ATP formed 2 ATP used 2 ATP 2 NAD+ 4 e 4 H+ 2 NADH 2 H+
Glycolysis: Energy Investment Phase Figure 9.9-1 Glycolysis: Energy Investment Phase ATP Glucose Glucose 6-phosphate ADP Hexokinase 1 Figure 9.9 A closer look at glycolysis.
Phosphogluco- isomerase Figure 9.9-2 Glycolysis: Energy Investment Phase ATP Glucose Glucose 6-phosphate Fructose 6-phosphate ADP Hexokinase Phosphogluco- isomerase 1 2 Figure 9.9 A closer look at glycolysis.
Phosphogluco- isomerase Phospho- fructokinase Figure 9.9-3 Glycolysis: Energy Investment Phase ATP ATP Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6-bisphosphate ADP ADP Hexokinase Phosphogluco- isomerase Phospho- fructokinase 1 2 3 Figure 9.9 A closer look at glycolysis.
Glycolysis: Energy Investment Phase Figure 9.9-4 Glycolysis: Energy Investment Phase ATP ATP Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6-bisphosphate ADP ADP Hexokinase Phosphogluco- isomerase Phospho- fructokinase 1 2 3 Aldolase 4 Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate Figure 9.9 A closer look at glycolysis. To step 6 Isomerase 5
Triose phosphate dehydrogenase 1,3-Bisphospho- glycerate Figure 9.9-5 Glycolysis: Energy Payoff Phase 2 NADH 2 NAD + 2 H Triose phosphate dehydrogenase 2 P i 1,3-Bisphospho- glycerate 6 Figure 9.9 A closer look at glycolysis.
Glycolysis: Energy Payoff Phase Figure 9.9-6 Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 NAD + 2 H 2 ADP 2 Triose phosphate dehydrogenase Phospho- glycerokinase 2 P i 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 6 Figure 9.9 A closer look at glycolysis.
Glycolysis: Energy Payoff Phase Figure 9.9-7 Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 NAD + 2 H 2 ADP 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase Phospho- glyceromutase 2 P i 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 8 2-Phospho- glycerate 6 Figure 9.9 A closer look at glycolysis.
Glycolysis: Energy Payoff Phase Figure 9.9-8 Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 H2O 2 NAD + 2 H 2 ADP 2 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase Phospho- glyceromutase Enolase 2 P i 9 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 8 2-Phospho- glycerate Phosphoenol- pyruvate (PEP) 6 Figure 9.9 A closer look at glycolysis.
Glycolysis: Energy Payoff Phase Figure 9.9-9 Glycolysis: Energy Payoff Phase 2 ATP 2 ATP 2 NADH 2 H2O 2 ADP 2 NAD + 2 H 2 ADP 2 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase Phospho- glyceromutase Enolase Pyruvate kinase 2 P i 9 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 8 2-Phospho- glycerate Phosphoenol- pyruvate (PEP) 10 Pyruvate 6 Figure 9.9 A closer look at glycolysis.
Phosphogluco- isomerase Figure 9.9a Glycolysis: Energy Investment Phase ATP Glucose Glucose 6-phosphate Fructose 6-phosphate ADP Figure 9.9 A closer look at glycolysis. Hexokinase Phosphogluco- isomerase Figure 9.9 A closer look at glycolysis. 1 2
Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate To step 6 Figure 9.9b Glycolysis: Energy Investment Phase ATP Fructose 6-phosphate Fructose 1,6-bisphosphate ADP Phospho- fructokinase Aldolase 4 3 Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate Figure 9.9 A closer look at glycolysis. To step 6 Isomerase 5
1,3-Bisphospho- glycerate 3-Phospho- glycerate Figure 9.9c Glycolysis: Energy Payoff Phase 2 ATP 2 NADH 2 NAD + 2 H 2 ADP 2 2 Triose phosphate dehydrogenase Phospho- glycerokinase 2 P i Figure 9.9 A closer look at glycolysis. 1,3-Bisphospho- glycerate 7 3-Phospho- glycerate 6
Phospho- glyceromutase Phosphoenol- pyruvate (PEP) Figure 9.9d Glycolysis: Energy Payoff Phase 2 ATP 2 H2O 2 ADP 2 2 2 2 Phospho- glyceromutase Enolase Pyruvate kinase 9 3-Phospho- glycerate 8 2-Phospho- glycerate Phosphoenol- pyruvate (PEP) 10 Pyruvate Figure 9.9 A closer look at glycolysis.
Concept 9.3: After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules In the presence of O2, pyruvate enters the mitochondrion (in eukaryotic cells) where the oxidation of glucose is completed © 2011 Pearson Education, Inc.
Oxidation of Pyruvate to Acetyl CoA Before the citric acid cycle can begin, pyruvate must be converted to acetyl Coenzyme A (acetyl CoA), which links glycolysis to the citric acid cycle This step is carried out by a multienzyme complex that catalyses three reactions © 2011 Pearson Education, Inc.
MITOCHONDRION CYTOSOL CO2 Coenzyme A NAD NADH + H Acetyl CoA Figure 9.10 MITOCHONDRION CYTOSOL CO2 Coenzyme A 1 3 2 NAD NADH + H Acetyl CoA Figure 9.10 Oxidation of pyruvate to acetyl CoA, the step before the citric acid cycle. Pyruvate Transport protein
The Citric Acid Cycle The citric acid cycle, also called the Krebs cycle, completes the break down of pyruvate to CO2 The cycle oxidizes organic fuel derived from pyruvate, generating 1 ATP, 3 NADH, and 1 FADH2 per turn © 2011 Pearson Education, Inc.
Pyruvate CO2 NAD CoA NADH + H Acetyl CoA CoA CoA Citric acid cycle Figure 9.11 Pyruvate CO2 NAD CoA NADH + H Acetyl CoA CoA CoA Citric acid cycle 2 CO2 Figure 9.11 An overview of pyruvate oxidation and the citric acid cycle. FADH2 3 NAD FAD 3 NADH + 3 H ADP + P i ATP
The citric acid cycle has eight steps, each catalyzed by a specific enzyme The acetyl group of acetyl CoA joins the cycle by combining with oxaloacetate, forming citrate The next seven steps decompose the citrate back to oxaloacetate, making the process a cycle The NADH and FADH2 produced by the cycle relay electrons extracted from food to the electron transport chain © 2011 Pearson Education, Inc.
Citric acid cycle Figure 9.12-1 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 Oxaloacetate Citrate Citric acid cycle Figure 9.12 A closer look at the citric acid cycle.
Citric acid cycle Figure 9.12-2 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 H2O Oxaloacetate 2 Citrate Isocitrate Citric acid cycle Figure 9.12 A closer look at the citric acid cycle.
Citric acid cycle Figure 9.12-3 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD Citric acid cycle NADH 3 + H CO2 -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle.
Citric acid cycle Figure 9.12-4 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD Citric acid cycle NADH 3 + H CO2 CoA-SH -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle. 4 CO2 NAD NADH Succinyl CoA + H
Citric acid cycle Figure 9.12-5 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD Citric acid cycle NADH 3 + H CO2 CoA-SH -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle. 4 CoA-SH 5 CO2 NAD Succinate P i NADH GTP GDP Succinyl CoA + H ADP ATP
Citric acid cycle Figure 9.12-6 Acetyl CoA Oxaloacetate Citrate CoA-SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD Citric acid cycle NADH 3 + H CO2 Fumarate CoA-SH -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle. 4 6 CoA-SH 5 FADH2 CO2 NAD FAD Succinate P i NADH GTP GDP Succinyl CoA + H ADP ATP
Citric acid cycle Figure 9.12-7 Acetyl CoA Oxaloacetate Malate Citrate CoA-SH 1 H2O Oxaloacetate 2 Malate Citrate Isocitrate NAD Citric acid cycle NADH 3 7 + H H2O CO2 Fumarate CoA-SH -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle. 4 6 CoA-SH 5 FADH2 CO2 NAD FAD Succinate P i NADH GTP GDP Succinyl CoA + H ADP ATP
Citric acid cycle Figure 9.12-8 Acetyl CoA Oxaloacetate Malate Citrate CoA-SH NADH + H 1 H2O NAD Oxaloacetate 8 2 Malate Citrate Isocitrate NAD Citric acid cycle NADH 3 7 + H H2O CO2 Fumarate CoA-SH -Ketoglutarate Figure 9.12 A closer look at the citric acid cycle. 4 6 CoA-SH 5 FADH2 CO2 NAD FAD Succinate P i NADH GTP GDP Succinyl CoA + H ADP ATP
Acetyl CoA 1 Oxaloacetate 2 Citrate Isocitrate H2O CoA-SH Figure 9.12a Figure 9.12 A closer look at the citric acid cycle. Oxaloacetate 2 Citrate Isocitrate
3 4 Isocitrate -Ketoglutarate Succinyl CoA NAD NADH + H CO2 CO2 Figure 9.12b Isocitrate NAD NADH 3 + H CO2 CoA-SH -Ketoglutarate 4 Figure 9.12 A closer look at the citric acid cycle. CO2 NAD NADH Succinyl CoA + H
Fumarate 6 5 Succinate Succinyl CoA FADH2 FAD P i GTP GDP ADP ATP Figure 9.12c Fumarate 6 CoA-SH 5 FADH2 FAD Succinate P i Figure 9.12 A closer look at the citric acid cycle. GTP GDP Succinyl CoA ADP ATP
Oxaloacetate 8 Malate 7 Fumarate NADH + H NAD H2O Figure 9.12d Figure 9.12 A closer look at the citric acid cycle. H2O Fumarate
Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle, NADH and FADH2 account for most of the energy extracted from food These two electron carriers donate electrons to the electron transport chain, which powers ATP synthesis via oxidative phosphorylation For the Cell Biology Video ATP Synthase 3D Structure — Side View, go to Animation and Video Files. For the Cell Biology Video ATP Synthase 3D Structure — Top View, go to Animation and Video Files. © 2011 Pearson Education, Inc.
The Pathway of Electron Transport The electron transport chain is in the inner membrane (cristae) of the mitochondrion Most of the chain’s components are proteins, which exist in multiprotein complexes The carriers alternate reduced and oxidized states as they accept and donate electrons Electrons drop in free energy as they go down the chain and are finally passed to O2, forming H2O © 2011 Pearson Education, Inc.
Multiprotein complexes I 40 II Figure 9.13 NADH 50 2 e NAD FADH2 2 e FAD Multiprotein complexes I 40 FMN II FeS FeS Q III Cyt b 30 FeS Cyt c1 IV Free energy (G) relative to O2 (kcal/mol) Cyt c Cyt a Cyt a3 20 Figure 9.13 Free-energy change during electron transport. 10 2 e (originally from NADH or FADH2) 2 H + 1/2 O2 H2O
The electron transport chain generates no ATP directly Electrons are transferred from NADH or FADH2 to the electron transport chain Electrons are passed through a number of proteins including cytochromes (each with an iron atom) to O2 The electron transport chain generates no ATP directly It breaks the large free-energy drop from food to O2 into smaller steps that release energy in manageable amounts © 2011 Pearson Education, Inc.
Chemiosmosis: The Energy-Coupling Mechanism Electron transfer in the electron transport chain causes proteins to pump H+ from the mitochondrial matrix to the intermembrane space H+ then moves back across the membrane, passing through the proton, ATP synthase ATP synthase uses the exergonic flow of H+ to drive phosphorylation of ATP This is an example of chemiosmosis, the use of energy in a H+ gradient to drive cellular work © 2011 Pearson Education, Inc.
INTERMEMBRANE SPACE H Stator Rotor Internal rod Catalytic knob ADP + Figure 9.14 INTERMEMBRANE SPACE H Stator Rotor Internal rod Figure 9.14 ATP synthase, a molecular mill. Catalytic knob ADP + P i ATP MITOCHONDRIAL MATRIX
Protein complex of electron carriers Figure 9.15 H H H Protein complex of electron carriers H Cyt c IV Q III I ATP synth- ase II 2 H + 1/2O2 H2O FADH2 FAD Figure 9.15 Chemiosmosis couples the electron transport chain to ATP synthesis. NAD NADH ADP P i ATP (carrying electrons from food) H 1 Electron transport chain 2 Chemiosmosis Oxidative phosphorylation
The energy stored in a H+ gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis The H+ gradient is referred to as a proton-motive force, emphasizing its capacity to do work © 2011 Pearson Education, Inc.
An Accounting of ATP Production by Cellular Respiration During cellular respiration, most energy flows in this sequence: glucose NADH electron transport chain proton-motive force ATP About 34% of the energy in a glucose molecule is transferred to ATP during cellular respiration, making about 32 ATP There are several reasons why the number of ATP is not known exactly © 2011 Pearson Education, Inc.
Oxidative phosphorylation: electron transport and chemiosmosis Figure 9.16 Electron shuttles span membrane MITOCHONDRION 2 NADH or 2 FADH2 2 NADH 2 NADH 6 NADH 2 FADH2 Oxidative phosphorylation: electron transport and chemiosmosis Glycolysis Pyruvate oxidation Citric acid cycle Glucose 2 Pyruvate 2 Acetyl CoA Figure 9.16 ATP yield per molecule of glucose at each stage of cellular respiration. 2 ATP 2 ATP about 26 or 28 ATP About 30 or 32 ATP Maximum per glucose: CYTOSOL
Concept 9.5: Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen Most cellular respiration requires O2 to produce ATP Without O2, the electron transport chain will cease to operate In that case, glycolysis couples with fermentation or anaerobic respiration to produce ATP © 2011 Pearson Education, Inc.
Anaerobic respiration uses an electron transport chain with a final electron acceptor other than O2, for example sulfate Fermentation uses substrate-level phosphorylation instead of an electron transport chain to generate ATP © 2011 Pearson Education, Inc.
Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD+, which can be reused by glycolysis Two common types are alcohol fermentation and lactic acid fermentation © 2011 Pearson Education, Inc.
In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO2 Alcohol fermentation by yeast is used in brewing, winemaking, and baking © 2011 Pearson Education, Inc.
Animation: Fermentation Overview Right-click slide / select “Play” © 2011 Pearson Education, Inc. 78
i i Figure 9.17 2 ATP 2 ATP Glucose Glycolysis Glucose 2 ADP 2 P i 2 ATP 2 ADP 2 P i 2 ATP Glucose Glycolysis Glucose Glycolysis 2 Pyruvate 2 NAD 2 NADH 2 CO2 2 NAD 2 NADH 2 H 2 H 2 Pyruvate Figure 9.17 Fermentation. 2 Ethanol 2 Acetaldehyde 2 Lactate (a) Alcohol fermentation (b) Lactic acid fermentation
2 ADP 2 P i 2 ATP Glucose Glycolysis 2 Pyruvate 2 NAD 2 NADH Figure 9.17a 2 ADP 2 P i 2 ATP Glucose Glycolysis 2 Pyruvate 2 NAD 2 NADH 2 CO2 2 H Figure 9.17 Fermentation. 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation
In lactic acid fermentation, pyruvate is reduced to NADH, forming lactate as an end product, with no release of CO2 Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O2 is scarce © 2011 Pearson Education, Inc.
2 ADP 2 P i 2 ATP Glucose Glycolysis 2 NAD 2 NADH 2 H Figure 9.17b 2 ADP 2 P i 2 ATP Glucose Glycolysis 2 NAD 2 NADH 2 H 2 Pyruvate Figure 9.17 Fermentation. 2 Lactate (b) Lactic acid fermentation
Comparing Fermentation with Anaerobic and Aerobic Respiration All use glycolysis (net ATP = 2) to oxidize glucose and harvest chemical energy of food In all three, NAD+ is the oxidizing agent that accepts electrons during glycolysis The processes have different final electron acceptors: an organic molecule (such as pyruvate or acetaldehyde) in fermentation and O2 in cellular respiration Cellular respiration produces 32 ATP per glucose molecule; fermentation produces 2 ATP per glucose molecule © 2011 Pearson Education, Inc.
Obligate anaerobes carry out fermentation or anaerobic respiration and cannot survive in the presence of O2 Yeast and many bacteria are facultative anaerobes, meaning that they can survive using either fermentation or cellular respiration In a facultative anaerobe, pyruvate is a fork in the metabolic road that leads to two alternative catabolic routes © 2011 Pearson Education, Inc.
Ethanol, lactate, or other products Figure 9.18 Glucose Glycolysis CYTOSOL Pyruvate No O2 present: Fermentation O2 present: Aerobic cellular respiration MITOCHONDRION Ethanol, lactate, or other products Acetyl CoA Figure 9.18 Pyruvate as a key juncture in catabolism. Citric acid cycle
The Evolutionary Significance of Glycolysis Ancient prokaryotes are thought to have used glycolysis long before there was oxygen in the atmosphere Very little O2 was available in the atmosphere until about 2.7 billion years ago, so early prokaryotes likely used only glycolysis to generate ATP Glycolysis is a very ancient process © 2011 Pearson Education, Inc.
Concept 9.6: Glycolysis and the citric acid cycle connect to many other metabolic pathways Gycolysis and the citric acid cycle are major intersections to various catabolic and anabolic pathways © 2011 Pearson Education, Inc.
The Versatility of Catabolism Catabolic pathways funnel electrons from many kinds of organic molecules into cellular respiration Glycolysis accepts a wide range of carbohydrates Proteins must be digested to amino acids; amino groups can feed glycolysis or the citric acid cycle © 2011 Pearson Education, Inc.
Fatty acids are broken down by beta oxidation and yield acetyl CoA Fats are digested to glycerol (used in glycolysis) and fatty acids (used in generating acetyl CoA) Fatty acids are broken down by beta oxidation and yield acetyl CoA An oxidized gram of fat produces more than twice as much ATP as an oxidized gram of carbohydrate © 2011 Pearson Education, Inc.
Oxidative phosphorylation Figure 9.19 Proteins Carbohydrates Fats Amino acids Sugars Glycerol Fatty acids Glycolysis Glucose Glyceraldehyde 3- P NH3 Pyruvate Acetyl CoA Figure 9.19 The catabolism of various molecules from food. Citric acid cycle Oxidative phosphorylation
Biosynthesis (Anabolic Pathways) The body uses small molecules to build other substances These small molecules may come directly from food, from glycolysis, or from the citric acid cycle © 2011 Pearson Education, Inc.
Regulation of Cellular Respiration via Feedback Mechanisms Feedback inhibition is the most common mechanism for control If ATP concentration begins to drop, respiration speeds up; when there is plenty of ATP, respiration slows down Control of catabolism is based mainly on regulating the activity of enzymes at strategic points in the catabolic pathway © 2011 Pearson Education, Inc.
Oxidative phosphorylation Figure 9.20 Glucose AMP Glycolysis Fructose 6-phosphate Stimulates Phosphofructokinase Fructose 1,6-bisphosphate Inhibits Inhibits Pyruvate ATP Citrate Acetyl CoA Figure 9.20 The control of cellular respiration. Citric acid cycle Oxidative phosphorylation
Inputs Outputs Glycolysis Glucose 2 Pyruvate 2 ATP 2 NADH Figure 9.UN06 Inputs Outputs Glycolysis Glucose 2 Pyruvate 2 ATP 2 NADH Figure 9.UN06 Summary figure, Concept 9.2
Inputs Outputs 2 Pyruvate 2 Acetyl CoA 2 ATP 8 NADH Citric acid cycle Figure 9.UN07 Inputs Outputs 2 Pyruvate 2 Acetyl CoA 2 ATP 8 NADH Citric acid cycle 2 Oxaloacetate 6 CO2 2 FADH2 Figure 9.UN07 Summary figure, Concept 9.3
Protein complex of electron carriers Cyt c Figure 9.UN08 INTERMEMBRANE SPACE H H H Protein complex of electron carriers Cyt c IV Q III I Figure 9.UN08 Summary figure, Concept 9.4 (part 1) II 2 H + 1/2 O2 H2O FADH2 FAD NAD NADH MITOCHONDRIAL MATRIX (carrying electrons from food)
MITO- CHONDRIAL MATRIX ATP synthase Figure 9.UN09 INTER- MEMBRANE SPACE H MITO- CHONDRIAL MATRIX ATP synthase Figure 9.UN09 Summary figure, Concept 9.4 (part 2) ADP + P i H ATP
pH difference across membrane Figure 9.UN10 pH difference across membrane Figure 9.UN10 Test Your Understanding, question 8 Time
Figure 9.UN11 Figure 9.UN11 Appendix A: answer to Test Your Understanding, question 8