Hyperbolic functions.

Slides:



Advertisements
Similar presentations
Differentiation of Hyperbolic Functions. Differentiation of Hyperbolic Functions by M. Seppälä Hyperbolic Functions.
Advertisements

Find the numerical value of the expression. sinh ( ln 4 )
Find the period of the function y = 4 sin x
CHAPTER Continuity Integration by Parts The formula for integration by parts  f (x) g’(x) dx = f (x) g(x) -  g(x) f’(x) dx. Substitution Rule that.
DIFFERENTIATION AND INTEGRATION OF HYPERBOLIC FUNCTIONS.
Gradients of Inverse Trig Functions Use the relationship Ex y = sin –1 x This is the same as siny = x ie sin both sides Sox = siny Differentiate this expression.
Calculus
Arcsin, Arccos, Arctan Paul Nettleton. Derivatives of Inverse trigonometric functions.
2.8 Integration of Trigonometric Functions
FP2 (MEI) Inverse hyperbolic functions
Packet #10 Proving Derivatives
Circle geometry: Equations / problems
Section 5.8 Hyperbolic Functions:
Integration By parts.
Sum and Difference Identities for the Sin Function
Trig addition formulae
Maclaurin and Taylor Series.
FP3 Chapter 4 Integration
FP3 Chapter 1 Hyperbolic Functions
Definite Integrals.
7.2 – Trigonometric Integrals
Fundamental Theorem of Calculus Indefinite Integrals
Find the numerical value of the expression. sinh ( ln 6 )
Integration.
مدير المدرسة أ. عقيل محمد مهنا الموجهه الأولى أ. حصة العلي
Integration review.
The General Power Formula
Differentiation Gradient problems.
Challenging problems Area between curves.
Integration 2a.

FM Series.
Simultaneous Equations substitution.
Packet #5 Derivative Shortcuts
FM Series.
CorePure2 Chapter 6 :: Hyperbolic Functions
Lesson 7-3 Trig Substitution.
Parametric equations Problem solving.
Methods in calculus.
Challenging problems Area between curves.
FM Series.
Half-Angle Identities
Methods in calculus.
Trig Equations.
Integration.
Methods in calculus.
Packet #5 Derivative Shortcuts
Integration Volumes of revolution.
Methods in calculus.
Hyperbolic functions.
Functions Inverses.
Packet #25 Substitution and Integration by Parts (Again)
Roots of polynomials.
Integration Volumes of revolution.
Integration Volumes of revolution.
Functions Inverses.
Further binomial Series expansion.
Integration Volumes of revolution.
Hyperbolic functions.
Integration Volumes of revolution.
Roots of polynomials.
Methods in calculus.
Methods in calculus.
Implicit differentiation
Roots of polynomials.
Determinant Of matrices.
Calculus 3-7 CHAIN RULE.
Methods in calculus.
Hyperbolic functions.
Auxiliary Equation with Complex Roots; Hyperbolic Functions
Presentation transcript:

Hyperbolic functions

FM Hyperbolic functions: Calculus KUS objectives BAT differentiate and integrate with hyperbolic functions Starter: integrate =− 1 3 c𝑜𝑠 3𝑥+2 +𝐶 sin (3𝑥+2) = 1 4 sin 4𝑥 +𝐶 cos 4𝑥 =2 tan 𝑥 2 +𝐶 𝑠𝑒𝑐 2 𝑥 2

d dx sinh 𝑥 = cosh 𝑥 sinh 𝑥 𝑑𝑥= cosh 𝑥 +𝐶 𝑑 𝑑𝑥 cosh 𝑥 = sinh 𝑥 Notes d dx sinh 𝑥 = cosh 𝑥 𝑑 𝑑𝑥 cosh 𝑥 = sinh 𝑥 d dx tanh 𝑥 = 𝑠𝑒𝑐ℎ 2 𝑥 sinh 𝑥 𝑑𝑥= cosh 𝑥 +𝐶 cosh 𝑥 𝑑𝑥= sinh 𝑥 +𝐶 d dx arsinh 𝑥 = 1 𝑥 2 +1 𝑑 𝑑𝑥 arcosh 𝑥 = 1 𝑥 2 −1 , d dx artanh 𝑥 = 1 1− 𝑥 2 , 𝑥>1 𝑥 <1 1 𝑥 2 +1 𝑑𝑥= 𝑎𝑟𝑠𝑖𝑛h 𝑥 +𝐶 1 𝑥 2 −1 , 𝑑𝑥= 𝑎𝑟𝑐𝑜𝑠h 𝑥 +𝐶 ,

WB E1 find these integrals 𝑎) cosh (4𝑥−1) 𝑑𝑥 b) 2+5𝑥 𝑥 2 +1 𝑑𝑥 by splitting to two integrals - one a standard, the other using substitution 𝒖= 𝑥 2 +1 1/2 𝑎) = 1 4 sinh (4𝑥−1) +𝐶 d dx arsinh 𝑥 = 1 𝑥 2 +1 𝑑 𝑑𝑥 arcosh 𝑥 = 1 𝑥 2 −1 , d dx artanh 𝑥 = 1 1− 𝑥 2 , 𝑏) =2 1 𝑥 2 +1 𝑑𝑥+ 5𝑥 𝑥 2 +1 𝑑𝑥 Substitution 𝒖= 𝑥 2 +1 1/2 𝒅𝒖 𝒅𝒙 = 𝟏 𝟐 𝑥 2 +1 −1/2 ×2𝑥 𝒅𝒖=𝒙 𝑥 2 +1 −1/2 𝒅𝒙 =2 1 𝑥 2 +1 𝑑𝑥+5 𝑥 𝑥 2 +1 −1/2 𝑑𝑥 =2 1 𝑥 2 +1 𝑑𝑥+5 1 𝑑𝑢 =2 𝑎𝑟𝑠𝑖𝑛ℎ 𝑥+5 𝑥 2 +1 1/2 +𝐶

WB E2 find these integrals 𝑎) cosh 5 2𝑥 sinh 2𝑥 𝑑𝑥 b) tanh 𝑥 𝑑𝑥 (a standard integral) 𝑎) = 1 2 cosh 5 2𝑥 2sinh 2𝑥 𝑑𝑥 Substitution 𝒖= cosh 2𝑥 𝒅𝒖 𝒅𝒙 =𝟐𝒔𝒊𝒏𝒉 𝟐𝒙 𝒅𝒖=𝟐 𝒔𝒊𝒏𝒉 𝟐𝒙 𝒅𝒙 = 1 2 u 5 𝑑𝑢 = 1 12 u 6 +𝐶 = 1 12 cosh 6 2𝑥+𝐶 Substitution 𝒖= cosh 𝑥 𝒅𝒖 𝒅𝒙 =𝒔𝒊𝒏𝒉 𝒙 𝒅𝒖= 𝒔𝒊𝒏𝒉 𝒙 𝒅𝒙 𝑎) = sinh 𝑥 cosh 𝑥 𝑑𝑥 = 1 𝑢 𝑑𝑢 = ln 𝑢 +𝐶 = ln cosh 𝑥 +𝐶 tanh 𝑥 𝑑𝑥= ln cosh 𝑥 +𝐶

WB E3 find these integrals 𝑎) cosh 2 3𝑥 𝑑𝑥 b) sinh 3 3𝑥 𝑑𝑥 Identity cosh 2𝑥 =2 𝑐𝑜𝑠ℎ 2 𝑥−𝟏 𝑐𝑜𝑠ℎ 2 𝑥= 𝟏 𝟐 𝒄𝒐𝒔𝒉 𝟐𝒙+𝟏 = 1 2 1 6 sinh 6𝑥 +𝑥 +𝐶 = 1 12 sinh 6𝑥 + 1 2 𝑥+𝐶 𝑏) = sinh 2 3𝑥 sinh 𝑥 𝑑𝑥 Substitution 𝒖= cosh 3𝑥 𝒅𝒖 𝒅𝒙 =𝟑𝒔𝒊𝒏𝒉 𝟑𝒙 𝟏 𝟑 𝒅𝒖= 𝒔𝒊𝒏𝒉 𝒙 𝒅𝒙 𝒖 𝟐 𝒅𝒖= 𝟏 𝟑 𝒖 𝟑 = 𝑐𝑜𝑠ℎ 2 3𝑥−𝟏 sinh 3𝑥 𝑑𝑥 = 𝑐𝑜𝑠ℎ 2 3𝑥 sinh 3𝑥 𝑑𝑥 − sinh 3𝑥 𝑑𝑥 =…= 1 9 𝑐𝑜𝑠ℎ 3 3𝑥− 1 3 cosh 3𝑥 +𝐶

WB E4 find these integrals 𝑎) e 2𝑥 sinh 𝑥 𝑑𝑥 b) −1/2 1/2 cosh 𝑥 𝑒 𝑥 𝑑𝑥 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑎) = 𝑒 2𝑥 𝑒 𝑥 − 𝑒 −𝑥 2 𝑑𝑥 = 1 2 𝑒 3𝑥 − 𝑒 𝑥 𝑑𝑥 = 1 2 𝑒 3𝑥 3 − 𝑒 𝑥 +𝐶 = 1 6 𝑒 3𝑥 −3 𝑒 𝑥 +𝐶 𝑏) = −1/2 1/2 𝑒 𝑥 + 𝑒 −𝑥 2 𝑒 𝑥 𝑑𝑥 = −1/2 1/2 1 2 + 1 2 𝑒 −2𝑥 𝑑𝑥 = 1 2 𝑥 − 1 4 𝑒 −2𝑥 1/2 −1/2 = 1 4 − 1 4 𝑒 −1 − − 1 4 − 1 4 𝑒 1 = 1 2 − 1 4𝑒 + 𝑒 4

WB E5a 𝑎) find 1 𝑥 2 − 𝑎 2 𝑑𝑥 using the substitution 𝒙= a cosh 𝑢 b) 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 5 8 1 𝑥 2 −16 𝑑𝑥= ln 2+ 3 2 𝑎) = 1 𝑎 2 𝑐𝑜𝑠ℎ 2 𝑢 − 𝑎 2 𝑎 𝑠𝑖𝑛ℎ 𝑢 𝑑𝑢 Substitution 𝒙= a cosh 𝑢 𝒅𝒙 𝒅𝒖 =𝒂 𝒔𝒊𝒏𝒉 𝒖 𝒅𝒙=𝒂 𝒔𝒊𝒏𝒉 𝒖 𝒅𝒖 𝒙 𝟐 = 𝑎 2 𝑐𝑜𝑠ℎ 2 𝑢 = 1 𝑎 2 𝑠𝑖𝑛ℎ 2 𝑢 𝑎 𝑠𝑖𝑛ℎ 𝑢 𝑑𝑢 = 1 𝑑𝑢 = arcosh 𝑥 𝑎 +𝐶 =𝑢+𝐶 𝑢= arcosh 𝑥 𝑎 1 𝑥 2 − 𝑎 2 𝑑𝑥= arcosh 𝑥 𝑎 +𝐶 Also 1 𝑥 2 + 𝑎 2 𝑑𝑥= arsinℎ 𝑥 𝑎 +𝐶 Identity 𝒔𝒊𝒏𝒉 𝟐 𝒙= 𝒄𝒐𝒔𝒉 𝟐 𝒙−𝟏 𝒂 𝟐 𝒔𝒊𝒏𝒉 𝟐 𝒙= 𝒂 𝟐 𝒄𝒐𝒔𝒉 𝟐 𝒙− 𝒂 𝟐

𝑎) find 1 𝑥 2 − 𝑎 2 𝑑𝑥 b) 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 5 8 1 𝑥 2 −16 𝑑𝑥= ln 2+ 3 2 WB E5b 𝑎) find 1 𝑥 2 − 𝑎 2 𝑑𝑥 b) 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 5 8 1 𝑥 2 −16 𝑑𝑥= ln 2+ 3 2 𝑏) = 5 8 1 𝑥 2 − 4 2 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 arsinℎ 𝑥 = ln 𝑥+ 𝑥 2 +1 arcosh 𝑥 = ln 𝑥+ 𝑥 2 −1 = arcosh 𝑥 4 8 5 =𝑎𝑟𝑐𝑜𝑠ℎ 2−arcosh 5 4 = ln 2+ 2 2 −1 − ln 5 4 + 5 4 2 −1 = ln 2+ 3 − ln 2 = ln 2+ 3 2 QED

WB E6 use the substitution 𝒙= sinh 𝑢 to 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 1+ 𝑥 2 𝑑𝑥 = 1 2 𝑎𝑟𝑠𝑖𝑛ℎ 𝑥+ 1 2 𝑥 1+ 𝑥 2 +𝐶 Substitution 𝒙= sinh 𝑢 𝒅𝒙 𝒅𝒖 =𝒄𝒐𝒔𝒉 𝒖 𝒅𝒙=𝒄𝒐𝒔𝒉 𝒖 𝒅𝒖 1+ 𝑥 2 𝑑𝑥= 1+ 𝑠𝑖𝑛ℎ 2 𝑥 cosh 𝑢 𝑑𝑢c = 𝑐𝑜𝑠ℎ 2 𝑢 𝑑𝑢 = 1 2 + 1 2 cosh 2𝑢 𝑑𝑢 𝒖= 𝑎𝑟sinh 𝑥 = 1 2 𝑢+ 1 4 sinh 2𝑢 +C 𝒄𝒐𝒔𝒉 𝒖= 𝟏+ 𝒔𝒊𝒏𝒉 𝟐 𝒖 = 𝟏+ 𝒙 𝟐 = 1 2 𝑢+ 1 4 2 sinh 𝑢 cosh 𝑢 +C Identities 𝒔𝒊𝒏𝒉 𝟐 𝒙= 𝒄𝒐𝒔𝒉 𝟐 𝒙−𝟏 𝒄𝒐𝒔𝒉 𝟐𝒙= 𝟐 𝒄𝒐𝒔𝒉 𝟐 𝒙−𝟏 𝒔𝒊𝒏𝒉 𝟐𝒙=𝟐𝒔𝒊𝒏𝒉 𝒙 𝒄𝒐𝒔𝒉 𝒙 = 1 2 𝑎𝑟𝑠𝑖𝑛ℎ 𝑥+ 1 2 𝑥 𝟏+ 𝒙 𝟐 +C

WB E7 use the hyperbolic substitution 𝑥=3 sinh 𝑢 to evaluate 0 6 𝑥 3 𝑥 2 +9 𝑑𝑥 𝑥 3 𝑥 2 +9 𝑑𝑥= 27 𝑠𝑖𝑛ℎ 3 𝑢 9 𝑠𝑖𝑛ℎ 2 𝑥+9 3cosh 𝑢 𝑑𝑢 Substitution 𝒙= 3sinh 𝑢 𝒅𝒙 𝒅𝒖 =𝟑𝒄𝒐𝒔𝒉 𝒖 𝒅𝒙=𝟑𝒄𝒐𝒔𝒉 𝒖 𝒅𝒖 𝒙 𝟑 =𝟐𝟕 𝑠𝑖𝑛ℎ 3 𝑢 = 27 𝑠𝑖𝑛ℎ 3 𝑢 3 𝑐𝑜𝑠ℎ 2 𝑥 3cosh 𝑢 𝑑𝑢 =27 𝑠𝑖𝑛ℎ 3 𝑢 𝑑𝑢 =27 𝑐𝑜𝑠ℎ 2 𝐮−𝟏 𝑠𝑖𝑛ℎ 𝑢 𝑑𝑥 =27 𝑐𝑜𝑠ℎ 2 𝑢 sinh 𝑢 𝑑𝑢 −27 sinh 𝑢 𝑑𝑥 =27 1 3 𝑐𝑜𝑠ℎ 3 𝑢− cosh 𝑢 +𝐶

WB E7 (cont) use the hyperbolic substitution 𝑥=3 sinh 𝑢 to evaluate 0 6 𝑥 3 𝑥 2 +9 𝑑𝑥 𝑥 3 𝑥 2 +9 𝑑𝑥=27 1 3 𝑐𝑜𝑠ℎ 3 𝑢− cosh 𝑢 +𝐶 Substitution 𝒙= 3sinh 𝑢 𝒅𝒙 𝒅𝒖 =𝟑𝒄𝒐𝒔𝒉 𝒖 𝒅𝒙=𝟑𝒄𝒐𝒔𝒉 𝒖 𝒅𝒖 𝒙 𝟑 =𝟐𝟕 𝑠𝑖𝑛ℎ 3 𝑢 0 6 𝑥 3 𝑥 2 +9 𝑑𝑥 =27 1 3 𝑐𝑜𝑠ℎ 3 𝑢− cosh 𝑢 𝑎𝑟𝑠𝑖𝑛ℎ 2 0 =27 5 5 3 − 5 − 1 3 −1 Bounds 𝒙= 3sinh 𝑢 𝒊𝒇 𝒙=𝟔 =𝟑𝒔𝒊𝒏𝒉 𝒖 𝒖=𝒂𝒓𝒔𝒊𝒏𝒉 𝟐 𝒊𝒇 𝒙=𝟎 =𝟑𝒔𝒊𝒏𝒉 𝒖 𝒖=𝒂𝒓𝒔𝒊𝒏𝒉 𝟎=𝟎 =𝟏𝟖 𝟓 +𝟏𝟖

WB E8 a) show that 1 12𝑥+2 𝑥 2 = 1 2 𝑢 2 −9 using a suitable substitution b) Hence find −𝜋 0 1 12𝑥+2 𝑥 2 𝑑𝑥 1 12𝑥+2 𝑥 2 = 1 2 𝑥 2 +6𝑥 = 1 2 (𝑥+3) 2 −9 = 1 2 𝑢 2 −9 a) First Use 𝑢=𝑥+3 −𝜋 0 1 12𝑥+2 𝑥 2 𝑑𝑥= 1 2 𝑢(−𝜋) 𝑢(0) 1 𝑢 2 −9 𝑑𝑥 b) = 1 2 𝑎𝑟𝑐𝑜𝑠ℎ 𝑢 3 = 1 2 𝑎𝑟𝑐𝑜𝑠ℎ 𝑥+3 3 0 −𝜋 = 1 2 0−1.618 =1.144

WB E9 Use the substitution 𝑥= 1 2 3+4 cosh 𝑢 to find 1 4 𝑥 2 −12𝑥−7 𝑑𝑥 4 𝑥 2 −12𝑥−7 = 4 1 2 3+4 cosh 𝑢 2 − 12 2 3+4 cosh 𝑢 −7 Substitution 𝒙= 𝟏 𝟐 𝟑+𝟒𝒄𝒐𝒔𝒉 𝒖 𝒅𝒙 𝒅𝒖 =𝟐 𝒔𝒊𝒏𝒉 𝒖 𝒅𝒙=𝟐𝒔𝒊𝒏𝒉 𝒖 𝒅𝒖 = 9+24 cosh 𝑢+16 𝑐𝑜𝑠ℎ 2 𝑢 −18−24𝑐𝑜𝑠ℎ𝑢−7 = 16 𝑐𝑜𝑠ℎ 2 𝑢−16 =4 𝑐𝑜𝑠ℎ 2 𝑢−1 =𝟒 𝐬𝐢𝐧𝐡 𝐮 1 4 𝑥 2 −12𝑥−7 𝑑𝑥= 1 4 sinh 𝑢 2𝑠𝑖𝑛ℎ 𝑢 𝑑𝑢 𝒖=𝒂𝒓𝒄𝒐𝒔 𝟐𝒙−𝟑 𝟒 = 1 2 𝑑𝑢 = 1 2 𝑢+𝐶 = 1 2 𝑑𝑢 = 1 2 𝑢+𝐶 = 1 2 𝑢+𝐶 = 1 2 𝒂𝒓𝒄𝒐𝒔 𝟐𝒙−𝟑 𝟒 +𝐶 NOW DO EX 6E

One thing to improve is – KUS objectives BAT differentiate and integrate with hyperbolic functions self-assess One thing learned is – One thing to improve is –

END