PPARγ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis

Slides:



Advertisements
Similar presentations
Peter L. Lee, Yuefeng Tang, Huawei Li, David A. Guertin 
Advertisements

Volume 10, Issue 4, Pages (October 2009)
Elsie Gonzalez-Hurtado, Jieun Lee, Joseph Choi, Michael J. Wolfgang
Volume 12, Issue 1, Pages (July 2010)
Volume 19, Issue 4, Pages (April 2014)
Volume 20, Issue 3, Pages (July 2017)
Volume 15, Issue 1, Pages (January 2012)
Volume 24, Issue 3, Pages (September 2016)
Volume 4, Issue 2, Pages (August 2006)
Volume 20, Issue 4, Pages (October 2014)
Volume 24, Issue 6, Pages (December 2016)
Volume 6, Issue 3, Pages (September 2007)
Volume 18, Issue 2, Pages (August 2013)
Volume 16, Issue 6, Pages (December 2012)
Volume 14, Issue 4, Pages (October 2011)
Volume 14, Issue 3, Pages (September 2011)
Antidiabetic Effects of IGFBP2, a Leptin-Regulated Gene
Volume 138, Issue 5, Pages (May 2010)
Volume 12, Issue 1, Pages (July 2010)
Volume 18, Issue 6, Pages (December 2013)
Volume 51, Issue 6, Pages (September 2006)
Volume 20, Issue 3, Pages (September 2014)
Volume 2, Issue 6, Pages (December 2005)
Protection against High-Fat-Diet-Induced Obesity in MDM2C305F Mice Due to Reduced p53 Activity and Enhanced Energy Expenditure  Shijie Liu, Tae-Hyung.
Antidiabetic Effects of IGFBP2, a Leptin-Regulated Gene
Critical Role for Hypothalamic mTOR Activity in Energy Balance
Volume 9, Issue 2, Pages (February 2009)
Volume 3, Issue 2, Pages (February 2006)
Volume 20, Issue 1, Pages (July 2014)
Volume 13, Issue 2, Pages (February 2011)
Volume 21, Issue 5, Pages (May 2015)
Volume 14, Issue 5, Pages (November 2011)
Volume 11, Issue 3, Pages (March 2010)
Volume 8, Issue 4, Pages (October 2008)
Volume 25, Issue 4, Pages e4 (April 2017)
Volume 5, Issue 5, Pages (May 2007)
Volume 1, Issue 4, Pages (April 2005)
Volume 24, Issue 8, Pages e7 (August 2018)
Volume 15, Issue 5, Pages (May 2012)
Volume 49, Issue 2, Pages (January 2006)
Volume 6, Issue 3, Pages (September 2007)
Volume 6, Issue 5, Pages (November 2007)
Juan Ji An, Guey-Ying Liao, Clint E. Kinney, Niaz Sahibzada, Baoji Xu 
Volume 21, Issue 11, Pages (December 2017)
Knockdown of NPY Expression in the Dorsomedial Hypothalamus Promotes Development of Brown Adipocytes and Prevents Diet-Induced Obesity  Pei-Ting Chao,
Volume 16, Issue 3, Pages (July 2016)
Volume 25, Issue 5, Pages (October 2018)
Volume 8, Issue 5, Pages (November 2008)
Volume 5, Issue 1, Pages (January 2007)
Volume 14, Issue 6, Pages (February 2016)
Circadian Dysfunction Induces Leptin Resistance in Mice
Volume 7, Issue 3, Pages (March 2008)
Volume 9, Issue 6, Pages (June 2009)
Mitofusin 2 in Mature Adipocytes Controls Adiposity and Body Weight
Volume 20, Issue 4, Pages (October 2014)
Lipin, a lipodystrophy and obesity gene
Volume 5, Issue 5, Pages (May 2007)
Volume 4, Issue 5, Pages (November 2006)
Volume 6, Issue 5, Pages (November 2007)
Clémence Blouet, Hiraku Ono, Gary J. Schwartz  Cell Metabolism 
Volume 60, Issue 4, Pages (November 2008)
Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation  Jieun Lee, Jessica M. Ellis, Michael J.
Volume 5, Issue 1, Pages (January 2007)
Volume 24, Issue 6, Pages (December 2016)
Haruya Ohno, Kosaku Shinoda, Bruce M. Spiegelman, Shingo Kajimura 
The GCN2 eIF2α Kinase Regulates Fatty-Acid Homeostasis in the Liver during Deprivation of an Essential Amino Acid  Feifan Guo, Douglas R. Cavener  Cell.
Volume 16, Issue 3, Pages (September 2012)
Volume 6, Issue 6, Pages (December 2007)
Transcriptional Control of Brown Fat Determination by PRDM16
Volume 4, Issue 4, Pages (October 2006)
Presentation transcript:

PPARγ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis Chen Liu, Angie L. Bookout, Syann Lee, Kai Sun, Lin Jia, Charlotte Lee, Swalpa Udit, Yingfeng Deng, Philipp E. Scherer, David J. Mangelsdorf, Laurent Gautron, Joel K. Elmquist  Cell Metabolism  Volume 19, Issue 4, Pages 722-730 (April 2014) DOI: 10.1016/j.cmet.2014.01.021 Copyright © 2014 Elsevier Inc. Terms and Conditions

Cell Metabolism 2014 19, 722-730DOI: (10.1016/j.cmet.2014.01.021) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 NR Expression in the NG (A) Laser-guided microdissection of neuron-enriched samples from thionin-counterstained nodose ganglia. Neuron-enriched areas appear darkly counterstained, as opposed to unstained regions, which contain mostly fibers and glial cells. (B) Relative levels of NR expression are indicated by the pie chart and shown in the tables to the right. (C–F) In situ hybridization of select lipid-sensing NRs in the NG. Clusters of silver grains (35S) indicate mRNA expression of LXRα (C), LXRβ (D), PPARγ (E), and PPARα (F). Cell Metabolism 2014 19, 722-730DOI: (10.1016/j.cmet.2014.01.021) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 NR Expression in Nodose Neurons after Long- and Short-Term Feeding with HFD (A–D) Relative mRNA levels of PPARγ (A), PPARδ(B), LXRα(C), and LXRβ(D) in the NG after 14 weeks of feeding with either chow (n = 6) or HFD (n = 8). Error bars show SEM. The symbol ∗ indicates p < 0.05. (E and F) Relative gene expression in the NG after 3-day and 5-day feeding with either chow (n = 10) or HFD (n = 10). Error bars show SEM. ∗ indicates p < 0.05. Cell Metabolism 2014 19, 722-730DOI: (10.1016/j.cmet.2014.01.021) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 PPARγ in Phox2b Neurons Regulates Energy Expenditure (A) Body weight of PPARγPhox2b KO mice and littermate controls on chow diet were followed over time (n = 11 per genotype). Arrow indicates the age at which mice were tested in metabolic cages. (B–E) Energy expenditure in weight-matched mice. (B) O2 consumption. (C) CO2 production. (D) Heat production. (E) Respiratory exchange ratio. (F) Locomotor activity. (G–L) Response to acute HFD challenge. Traces of O2 consumption (G), CO2 production (H), and heat generation (I) during 12 hr light and dark cycles. (J–L) Changes in O2 consumption (J), CO2 production (K), and heat production (L) of the same mice before and after the switch to HFD. Error bars show SEM. The symbol ∗ indicates p < 0.05. Cell Metabolism 2014 19, 722-730DOI: (10.1016/j.cmet.2014.01.021) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 White Adipocyte Reprogramming and Altered NG Gene Expression in PPARγPhox2b KO Mice (A) Relative gene expression in BAT (n = 6 per genotype). (B) Relative gene expression in subcutaneous. WAT (n = 6 per genotype). Error bars show SEM. The symbol ∗ indicates p < 0.05. (C and D) HE staining of subcutaneous WAT. (E and F) Immunohistochemistry for UCP1 in subcutaneous WAT. Scale bar is 50 μm. (G–J) PPARγ regulates gene expression in the NG. (G) Expression of PPARγ1 and PPARγ2 mRNA in the NG of wild-type mice fed with either chow or HFD. The symbol ∗∗∗ indicates p < 0.001. (H) Relative expression of several canonical PPARγ transcriptional targets expression in the NG. (I) Relative expression of neuronal gene expression in the NG. a indicates p < 0.01; b indicates p < 0.05. (J) Anorectic responses to CCK treatment in PPARγPhox2b KO and control mice. Data are shown as percentage of food intake (CCK)/food intake (Saline). n = 11 to 13; ∗ indicates p < 0.05 comparing food intake in the same animals treated with saline and CCK. Cell Metabolism 2014 19, 722-730DOI: (10.1016/j.cmet.2014.01.021) Copyright © 2014 Elsevier Inc. Terms and Conditions