TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels

Slides:



Advertisements
Similar presentations
Volume 86, Issue 5, Pages (June 2015)
Advertisements

Volume 19, Issue 8, Pages (May 2017)
Volume 13, Issue 6, Pages (November 2015)
Volume 19, Issue 3, Pages (April 2017)
Isabella Maiellaro, Martin J. Lohse, Robert J. Kittel, Davide Calebiro 
Endocannabinoids Control the Induction of Cerebellar LTD
Gina Rinetti-Vargas, Khanhky Phamluong, Dorit Ron, Kevin J. Bender 
Volume 18, Issue 4, Pages (January 2017)
Ca2+/Calcineurin-Dependent Inactivation of Neuronal L-Type Ca2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A  Philip J. Dittmer, Mark L.
Cell-Autonomous Excitation of Midbrain Dopamine Neurons by Endocannabinoid- Dependent Lipid Signaling  Stephanie C. Gantz, Bruce P. Bean  Neuron  Volume.
Volume 94, Issue 2, Pages e3 (April 2017)
Volume 81, Issue 1, Pages (January 2014)
Volume 21, Issue 4, Pages (October 2017)
Volume 8, Issue 5, Pages (September 2014)
Volume 82, Issue 6, Pages (June 2014)
Volume 21, Issue 12, Pages (December 2017)
Preceding Inhibition Silences Layer 6 Neurons in Auditory Cortex
Evidence for Mechanosensitive Channel Activity of Tentonin 3/TMEM150C
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Brv1 Is Required for Drosophila Larvae to Sense Gentle Touch
Volume 21, Issue 9, Pages (November 2017)
B. H. He, M. Christin, S. Mouchbahani-Constance, A. Davidova, R
Volume 11, Issue 12, Pages (June 2015)
Pacemaking by HCN Channels Requires Interaction with Phosphoinositides
Volume 16, Issue 4, Pages (July 2016)
Volume 90, Issue 3, Pages (May 2016)
Volume 19, Issue 8, Pages (May 2017)
Volume 14, Issue 11, Pages (November 2017)
A Role for Stargazin in Experience-Dependent Plasticity
High Plasticity of New Granule Cells in the Aging Hippocampus
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Amanda H. Lewis, Alisa F. Cui, Malcolm F. McDonald, Jörg Grandl 
Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin- Positive Interneurons in Mouse Cortex  Laura Sancho, Brenda L. Bloodgood 
Ana Parabucki, Ilan Lampl  Cell Reports 
Volume 12, Issue 6, Pages (August 2015)
Volume 17, Issue 9, Pages (November 2016)
Volume 10, Issue 9, Pages (March 2015)
Volume 15, Issue 1, Pages (April 2016)
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Elizabeth A.K. Phillips, Christoph E. Schreiner, Andrea R. Hasenstaub 
Synaptic transmission and plasticity is disturbed in 2-week-old but not in adult SynDIG1 β-gal mutant mice. Synaptic transmission and plasticity is disturbed.
Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period  Kyung-Seok Han, Samuel F. Cooke, Weifeng Xu  Cell.
Evidence for Mechanosensitive Channel Activity of Tentonin 3/TMEM150C
Volume 27, Issue 3, Pages e5 (April 2019)
Volume 13, Issue 6, Pages (November 2015)
Volume 16, Issue 10, Pages (September 2016)
Rapid State-Dependent Alteration in Kv3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization  Matthew.
Rui Qin, Shuai Cao, Tianjie Lyu, Cai Qi, Weiguang Zhang, Yun Wang 
Volume 25, Issue 11, Pages (June 2015)
Calcium Release from Stores Inhibits GIRK
Effects of Temperature on Heteromeric Kv11.1a/1b and Kv11.3 Channels
Kristina Valentinova, Manuel Mameli  Cell Reports 
Andrea McQuate, Elena Latorre-Esteves, Andres Barria  Cell Reports 
Strong G-Protein-Mediated Inhibition of Sodium Channels
Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1  Katelyn N. Benthall, Stacie L. Ong, Helen S.
Volume 58, Issue 1, Pages (April 2008)
Bilal Haider, David P.A. Schulz, Michael Häusser, Matteo Carandini 
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Volume 28, Issue 18, Pages e3 (September 2018)
Ca2+/Calcineurin-Dependent Inactivation of Neuronal L-Type Ca2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A  Philip J. Dittmer, Mark L.
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Gen Ohtsuki, Christian Hansel
Volume 26, Issue 8, Pages e3 (February 2019)
Volume 9, Issue 5, Pages (December 2014)
Volume 28, Issue 5, Pages e5 (July 2019)
Volume 27, Issue 11, Pages e3 (June 2019)
Matthew T. Rich, Yanhua H. Huang, Mary M. Torregrossa  Cell Reports 
α2δ-3 Is Required for Rapid Transsynaptic Homeostatic Signaling
Irreplaceability of Neuronal Ensembles after Memory Allocation
Volume 23, Issue 10, Pages (June 2018)
Presentation transcript:

TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels Evan O. Anderson, Eve R. Schneider, Jon D. Matson, Elena O. Gracheva, Sviatoslav N. Bagriantsev  Cell Reports  Volume 23, Issue 3, Pages 701-708 (April 2018) DOI: 10.1016/j.celrep.2018.03.094 Copyright © 2018 The Author(s) Terms and Conditions

Cell Reports 2018 23, 701-708DOI: (10.1016/j.celrep.2018.03.094) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 Mouse and Duck TMEM150C Potentiate Piezo2 Mechano-current in HEK293TΔP1 Cells (A and B) Representative images of RNA in situ hybridization (A) and quantification of TMEM150C-expressing neurons (B) in adult duck TG (2,808 cells from 19 TG sections from 2 animals). Scale bar, 50 μm. (C) Exemplar whole-cell MA current traces recorded in HEK293TΔP1 cells expressing Piezo2 with or without mouse or duck TMEM150C in response to mechanical indentation with a glass probe to the indicated depth (Ehold = −80 mV). (D) Peak MA current measured at different indentation depths in HEK293TΔP1 cells expressing indicated constructs (Ehold = −80 mV). Data shown as mean ± SEM. (E) Quantification of MA current activation threshold (p < 0.0001, one-way ANOVA with Dunnett’s correction, ∗∗p < 0.001, ∗∗∗∗p < 0.0001). Data shown as mean ± SEM. (F) Quantification of MA current inactivation rate (τinact) measured at different indentation depths (ordinary two-way ANOVA with Bonferroni correction, p < 0.0001 for expression construct effect; NS, not significant; p > 0.05, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001; red, blue, and gray asterisks indicate statistical comparisons between, respectively, Piezo2/mTMEM150C and Piezo2, Piezo2/dTMEM150C and Piezo2, and Piezo2/mTMEM150C and Piezo2/dTMEM150C). Data shown as mean ± SEM. (G) Representative traces of whole-cell MA currents evoked in response to 9 μm mechanical indentation at different voltages from −100 mV to 100 mV, in 20 mV increments. (H) Quantification of MA current τinact at different voltages (two-way ANOVA with Sidak’s correction, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001). Data shown as mean ± SEM. (I) Peak MA current-voltage plots in response to mechanical indentation of 5–10 μm for Piezo2/GFP and 4-9 μm for Piezo2/mTMEM150C. The inset shows quantification of the reversal potential Erev (unpaired t test; NS, not significant; p > 0.05). Data shown as mean ± SEM. See also Figures S1, S3A, and S3B. Cell Reports 2018 23, 701-708DOI: (10.1016/j.celrep.2018.03.094) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 TMEM150C Potentiates MA Current Produced by Piezo1 (A) Exemplar whole-cell MA current traces recorded in HEK293TΔP1 cells in response to mechanical indentation with a glass probe at Ehold = −80 mV. Arrow indicates the position of persistent post-stimulus MA current measurement. (B) Peak MA current measured at different indentation depths in HEK293TΔP1 cells expressing indicated constructs (Ehold = −80 mV). Data shown as mean ± SEM. (C and D) Quantification of MA current activation threshold (C) and inactivation rate τinact (D). NS, not significant; p > 0.05, ∗∗p < 0.01; unpaired t test (C) and Mann-Whitney U-test (D). Data shown as mean ± SEM. (E) Post-stimulus MA current amplitude at different indentation depths. ∗∗∗∗p < 0.0001 for expression construct effect, two-way ANOVA. Data shown as mean ± SEM. (F) Quantification of peak-normalized amplitude of persistent post-stimulus MA current. ∗∗∗∗p < 0.0001, Mann-Whitney U test. Data shown as mean ± SEM. See also Figure S2A. Cell Reports 2018 23, 701-708DOI: (10.1016/j.celrep.2018.03.094) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 TMEM150C Potentiates Piezo1 MA Current Evoked by High-Speed Pressure Clamp (A) Exemplar cell-attached MA current traces recorded in HEK293TΔP1 cells in response to application of a negative pressure in the pipette at Ehold = −60 mV. Each pressure step was preceded by a 500-ms step at 5 mmHg to remove inactivation. Arrow indicates the position of persistent post-stimulus MA current measurement. (B) Quantification of peak MA current amplitude measured at −60 mV at different pressures. Data shown as mean ± SEM. (C and D) Quantification of MA current activation threshold (C) and inactivation rate τinact (D). NS, not significant; p > 0.05, ∗∗p < 0.01; Mann-Whitney U-test (C) and unpaired t test (D). Data shown as mean ± SEM. (E) Post-stimulus MA current amplitude at different pressures. ∗∗∗∗p < 0.0001 for expression construct effect, two-way ANOVA. Data shown as mean ± SEM. (F) Quantification of peak-normalized amplitude of persistent post-stimulus MA current. ∗p < 0.05, Welch’s test. Data shown as mean ± SEM. See also Figure S2B. Cell Reports 2018 23, 701-708DOI: (10.1016/j.celrep.2018.03.094) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 TMEM150C Potentiates MA Current of Potassium-Selective TREK-1 Channel (A) Exemplar cell-attached MA current traces recorded in HEK293TΔP1 cells in response to application of a negative pressure in the pipette using a high-speed pressure clamp (Ehold = 0 mV). Each pressure step was preceded by a 500-ms step at 5 mmHg to remove inactivation. (B) Quantification of peak MA potassium current amplitude measured at Ehold = 0 mV at different pressures. Data shown as mean ± SEM. (C and D) Quantification of cell-attached MA current activation threshold (C) and average inactivation rate (D). NS, not significant; p > 0.05, ∗∗p < 0.01, Mann-Whitney U test. Data shown as mean ± SEM. See also Figures S2C and S3C. Cell Reports 2018 23, 701-708DOI: (10.1016/j.celrep.2018.03.094) Copyright © 2018 The Author(s) Terms and Conditions