Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.

Slides:



Advertisements
Similar presentations
Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Advertisements

Figure 2 ALSFRS-R changes (A) Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) slope after 6 months of treatment without (left)
7.1b. Contrast coronal T1 Wtd MRI 7.1c. Contrast sagittal T1 Wtd MRI
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Figure 3 Example of venous narrowing
Figure 3 JCV index changes in JCV+ patients
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Brain MRI follow-up of Sjögren syndrome–associated type II mixed cryoglobulinemic cerebral vasculitis treated with rituximab Brain MRI follow-up.
Figure 3. MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis.
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure Longitudinal MRI study data demonstrating evolution of central pontine myelinolysis(A, B) Axial T2-weighted MRI of the brain from January 9, 2014,
Figure 5. A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome (A) Neuroimaging.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 1 MOR103 sequential-dose trial flowchart of study population with multiple sclerosis aPatients received 2 doses of study drug before trial withdrawal.
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure 1 Peripheral blood leukocyte subset counts during dimethyl fumarate treatmentComplete blood cell counts were obtained at baseline (n = 34) and at.
Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏
Figure 2 DTI values between the hepatitis C group and controls(A) DTI FA values, (B) DTI diffusion values. *Statistically significant at FDR-adjusted p.
Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology.
Figure 2 Example of venous narrowing
Figure 2 Lesion localization visualized in the top view of the model
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure 1 Schematic overview of flow cytometry Schematic overview on the analysis of peripheral immune cells by flow cytometry. Schematic overview of flow.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure 1 JCV serostatus JCV serostatus (A) Serostatus of 1,921 natalizumab-treated patients with multiple sclerosis, with JCV− patients shown in black.
Figure 3 Longitudinal performance of 2 MS–cohabitant participant pairs on Ishihara color testing Both response speed and response accuracy are provided.
Figure Clinical and radiologic course(A) The T2 contrast-enhanced sequence on day 3 shows an extensive central cord lesion extending from C2 to T7. Clinical.
Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast.
Figure 1 Annual trend in specimen type submitted as first sample for aquaporin-4 immunoglobulin G testing (serum only vs CSF only vs both) from 101,065.
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 3 Clinical and MRI outcomes by quartiles of increasing CD56bright natural killer (NK) cell countsAll data are mean and upper 95% confidence interval.
Figure Leptomeningeal inflammationPostcontrast T1-weighted MRI: abnormal leptomeningeal enhancement over the frontoparietal lobes and interhemispheric.
Figure 1 MRI findings over time
Figure 1 Representative spinal cord MRIs from patients with neuromyelitis optica Longitudinally extensive transverse myelitis of the cervical (A) and cervicothoracic.
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Assessment of systemic disease activityTc99 scintigraphy (A) and fluorodeoxyglucose PET imaging (B, C) at disease onset 2 years before acute deterioration.
Figure 1. Spinal cord MRI and immunofluorescence staining of the patient's serum and controls on different tissues and recombinant cell substrates Spinal.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 2 Kaplan-Meier survival curves for the fingolimod cohort In each graph, bottom tertile: solid line; middle tertile: long dashed line; top tertile:
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Patient 1 MRI evolution over time
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Presentation transcript:

Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing lesion in the medial right temporal lobe. Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing lesion in the medial right temporal lobe. (B) Repeat imaging 1 month after receiving antitoxoplasmosis treatment. Danilo R. Bernardo, Jr, and Nizar Chahin Neurol Neuroimmunol Neuroinflamm 2015;2:e63 © 2015 American Academy of Neurology