Announcements Midterm out today Project 1 demos.

Slides:



Advertisements
Similar presentations
The Camera : Computational Photography Alexei Efros, CMU, Fall 2006.
Advertisements

CS 691 Computational Photography Instructor: Gianfranco Doretto 3D to 2D Projections.
Three-Dimensional Viewing Sang Il Park Sejong University Lots of slides are stolen from Jehee Lee’s.
Computer Vision CS 776 Spring 2014 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides)
The Camera CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014.
Projection Readings Szeliski 2.1. Projection Readings Szeliski 2.1.
Image formation and cameras CSE P 576 Larry Zitnick Many slides courtesy of Steve Seitz.
Cameras (Reading: Chapter 1) Goal: understand how images are formed Camera obscura dates from 15 th century Basic abstraction is the pinhole camera Perspective.
Image Formation and Optics
Modeling Light : Rendering and Image Processing Alexei Efros.
Announcements. Projection Today’s Readings Nalwa 2.1.
Lecture 5: Projection CS6670: Computer Vision Noah Snavely.
Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Talk today on “Lightfield photography” by Ren.
Lecture 5: Cameras and Projection CS6670: Computer Vision Noah Snavely.
CSCE641: Computer Graphics Image Formation Jinxiang Chai.
Announcements Mailing list Project 1 test the turnin procedure *this week* (make sure it works) vote on best artifacts in next week’s class Project 2 groups.
Lecture 4a: Cameras CS6670: Computer Vision Noah Snavely Source: S. Lazebnik.
Lecture 12: Projection CS4670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 6: Image Warping and Projection CS6670: Computer Vision Noah Snavely.
CS223b, Jana Kosecka Rigid Body Motion and Image Formation.
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 02/26/15 1.
The Camera : Computational Photography Alexei Efros, CMU, Fall 2008.
CSCE 641: Computer Graphics Image Formation & Plenoptic Function Jinxiang Chai.
Cameras, lenses, and calibration
Image formation and cameras
Perspective projection
Cameras CSE 455, Winter 2010 January 25, 2010.
EEM 561 Machine Vision Week 10 :Image Formation and Cameras
Building a Real Camera.
Image formation & Geometrical Transforms Francisco Gómez J MMS U. Central y UJTL.
Northeastern University, Fall 2005 CSG242: Computational Photography Ramesh Raskar Mitsubishi Electric Research Labs Northeastern University September.
1 CS6825: Image Formation How are images created. How are images created.
776 Computer Vision Jan-Michael Frahm Fall Camera.
CPSC 641: Computer Graphics Image Formation Jinxiang Chai.
Image Formation Fundamentals Basic Concepts (Continued…)
Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 01/25/11 1.
1 Computer Vision 一目 了然 一目 了然 一看 便知 一看 便知 眼睛 頭腦 眼睛 頭腦 Computer = Image + Artificial Vision Processing Intelligence Vision Processing Intelligence.
EECS 274 Computer Vision Cameras.
CSE 185 Introduction to Computer Vision Cameras. Camera models –Pinhole Perspective Projection –Affine Projection –Spherical Perspective Projection Camera.
0 Assignment 1 (Due: 3/9) The projections of two parallel lines, l 1 and l 2, which lie on the ground plane G, onto the image plane I converge at a point.
Projection Readings Nalwa 2.1 Szeliski, Ch , 2.1
More with Pinhole + Single-view Metrology
Image Formation and Cameras CSE 455 Linda Shapiro 1.
Announcements Project 1 grading session this Thursday 2:30-5pm, Sieg 327 –signup ASAP:signup –10 minute slot to demo your project for a TA »have your program.
Lecture 18: Cameras CS4670 / 5670: Computer Vision KavitaBala Source: S. Lazebnik.
CSE 185 Introduction to Computer Vision
PNU Machine Vision Lecture 2a: Cameras Source: S. Lazebnik.
Capturing Light… in man and machine
CS5670: Computer Vision Lecture 9: Cameras Noah Snavely
Jan-Michael Frahm Fall 2016
The Camera : Computational Photography
Announcements Project 1 Project 2
CSE 185 Introduction to Computer Vision
CSCE 441 Computer Graphics 3-D Viewing
Announcements Project 1 Project 2 Due Wednesday at 11:59pm
CS 790: Introduction to Computational Vision
CS4670 / 5670: Computer Vision Lecture 12: Cameras Noah Snavely
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016
Lecture 13: Cameras and geometry
EECS 274 Computer Vision Cameras.
The Camera : Computational Photography
Announcements Midterm out today Project 1 demos.
Projection Readings Nalwa 2.1.
Credit: CS231a, Stanford, Silvio Savarese
Projection Readings Szeliski 2.1.
Photographic Image Formation I
The Camera.
Presentation transcript:

Announcements Midterm out today Project 1 demos

Projection Today’s Readings Nalwa 2.1 (handout)

Image formation Let’s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera Add a barrier to block off most of the rays This reduces blurring The opening known as the aperture How does this transform the image? it gets inverted

Camera Obscura The first camera Known to Aristotle How does the aperture size affect the image?

Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction effects...

Shrinking the aperture

Adding a lens A lens focuses light onto the film “circle of confusion” A lens focuses light onto the film There is a specific distance at which objects are “in focus” other points project to a “circle of confusion” in the image Changing the shape of the lens changes this distance

(Center Of Projection) Lenses F focal point optical center (Center Of Projection) A lens focuses parallel rays onto a single focal point focal point at a distance f beyond the plane of the lens f is a function of the shape and index of refraction of the lens Aperture of diameter D restricts the range of rays aperture may be on either side of the lens Lenses are typically spherical (easier to produce)

Lenses Thin lens equation Any object point satisfying this equation is in focus What is the shape of the focus region? How can we change the focus region?

Depth of field Changing the aperture size affects depth of field A smaller aperture increases the range in which the object is approximately in focus

The eye The human eye is a camera Iris - colored annulus with radial muscles Pupil - the hole (aperture) whose size is controlled by the iris What’s the “film”? photoreceptor cells (rods and cones) in the retina

Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons http://www.howstuffworks.com/digital-camera2.htm

Modeling projection The coordinate system We will use the pin-hole model as an approximation Put the optical center (Center Of Projection) at the origin Put the image plane (Projection Plane) in front of the COP Why? The camera looks down the negative z axis we need this if we want right-handed-coordinates This way the image is right-side-up

Modeling projection Projection equations Compute intersection with PP of ray from (x,y,z) to COP Derived using similar triangles (on board) We get the projection by throwing out the last coordinate:

Homogeneous coordinates Is this a linear transformation? no—division by z is nonlinear Trick: add one more coordinate: homogeneous image coordinates homogeneous scene coordinates Converting from homogeneous coordinates

Perspective Projection Projection is a matrix multiply using homogeneous coordinates: divide by third coordinate This is known as perspective projection The matrix is the projection matrix Can also formulate as a 4x4 (today’s reading does this) divide by fourth coordinate

Perspective Projection How does multiplying the projection matrix change the transformation?

Orthographic projection Special case of perspective projection Distance from the COP to the PP is infinite Also called “parallel projection” What’s the projection matrix? Image World

Other types of projection Scaled orthographic Also called “weak perspective” Affine projection Also called “paraperspective”