Volume 14, Issue 6, Pages (June 2007)

Slides:



Advertisements
Similar presentations
Structure-Based Engineering of Angucyclinone 6-Ketoreductases
Advertisements

Volume 13, Issue 10, Pages (October 2006)
Volume 15, Issue 10, Pages (October 2008)
Volume 16, Issue 10, Pages (October 2009)
Volume 13, Issue 6, Pages (June 2006)
Polina D. Kehayova, David R. Liu  Chemistry & Biology 
Foundations for Directed Alkaloid Biosynthesis
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Adding Specificity to Artificial Transcription Activators
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 20, Issue 6, Pages (June 2013)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Volume 15, Issue 11, Pages (November 2008)
Volume 19, Issue 2, Pages (February 2012)
Volume 10, Issue 5, Pages (May 2003)
Redesign of a Dioxygenase in Morphine Biosynthesis
Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold  Hideki Watanabe, Shinya Honda  Chemistry.
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 15, Issue 10, Pages (October 2008)
Volume 22, Issue 2, Pages (February 2015)
Volume 13, Issue 10, Pages (October 2006)
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Volume 13, Issue 5, Pages (May 2006)
Volume 13, Issue 9, Pages (September 2006)
Liujie Huo, Shwan Rachid, Marc Stadler, Silke C. Wenzel, Rolf Müller 
Volume 18, Issue 5, Pages (May 2011)
Volume 7, Issue 11, Pages (November 2000)
Volume 15, Issue 11, Pages (November 2008)
Volume 10, Issue 11, Pages (November 2003)
Volume 14, Issue 2, Pages (February 2007)
Volume 10, Issue 5, Pages (May 2003)
Volume 16, Issue 5, Pages (May 2009)
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases  Li Tang, Hong Fu,
Volume 15, Issue 5, Pages (May 2008)
Volume 15, Issue 2, Pages (February 2008)
Biosynthetic Gene Cluster of the Glycopeptide Antibiotic Teicoplanin
Foundations for Directed Alkaloid Biosynthesis
Volume 11, Issue 7, Pages (July 2004)
Volume 20, Issue 11, Pages (November 2013)
Volume 16, Issue 10, Pages (October 2009)
Volume 8, Issue 1, Pages (January 2001)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 11, Issue 10, Pages (October 2004)
Volume 9, Issue 2, Pages (February 2002)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 22, Issue 6, Pages (June 2015)
Volume 15, Issue 8, Pages (August 2008)
Elegant Metabolite Biosynthesis
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Structure-Based Engineering of Angucyclinone 6-Ketoreductases
Volume 12, Issue 10, Pages (October 2005)
Volume 18, Issue 12, Pages (December 2011)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
Volume 14, Issue 6, Pages (June 2006)
Volume 15, Issue 9, Pages (September 2008)
Volume 21, Issue 9, Pages (September 2014)
Volume 19, Issue 3, Pages (March 2012)
Flexing and Stretching in Nonribosomal Peptide Synthetases
Volume 13, Issue 7, Pages (July 2006)
Volume 12, Issue 3, Pages (March 2005)
Structure-Based Engineering of Angucyclinone 6-Ketoreductases
Volume 13, Issue 3, Pages (March 2006)
Volume 21, Issue 9, Pages (September 2014)
Volume 14, Issue 3, Pages (March 2007)
Volume 25, Issue 4, Pages e4 (April 2018)
Volume 22, Issue 6, Pages (June 2015)
Presentation transcript:

Volume 14, Issue 6, Pages 703-714 (June 2007) Insights into Polyether Biosynthesis from Analysis of the Nigericin Biosynthetic Gene Cluster in Streptomyces sp. DSM4137  Barbara M. Harvey, Tatiana Mironenko, Yuhui Sun, Hui Hong, Zixin Deng, Peter F. Leadlay, Kira J. Weissman, Stephen F. Haydock  Chemistry & Biology  Volume 14, Issue 6, Pages 703-714 (June 2007) DOI: 10.1016/j.chembiol.2007.05.011 Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 1 Structures of the Polyethers Nigericin, Abierixin, Monensin, and Nanchangmycin Chemistry & Biology 2007 14, 703-714DOI: (10.1016/j.chembiol.2007.05.011) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 2 The Organization of the Nigericin Biosynthetic Gene Cluster The proposed functions of the genes shown are indicated by their color; modular PKS genes are shown in green, auxiliary PKS genes are shown in brown, the SAM-dependent methyltranferase is shown in pink, the thioesterase is shown in orange, the cytochrome P450 hydroxylase is shown in blue, the FAD-dependent epoxidase is shown in yellow, the cyclases are shown in red, and a gene encoding a hypothetical protein is shown in gray. Chemistry & Biology 2007 14, 703-714DOI: (10.1016/j.chembiol.2007.05.011) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 3 LC-MS Analysis of Nigericin-Related Metabolites Produced by Mutant Strains of Streptomyces sp. DSM4137 (A) LC-MS chromatogram of the sodiated ion (m/z 747.5) from nigericin standard. (B) LC-MS chromatogram of the sodiated ion (m/z 747.5) from the azalomycin- and meridamycin-deleted strain. (C) LC-MS chromatogram of the sodiated ion (m/z 747.5) from the azalomycin-, meridamycin-, and nigericin-deleted strain. Chemistry & Biology 2007 14, 703-714DOI: (10.1016/j.chembiol.2007.05.011) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 4 A Comparison of the Organization of the First Nine PKS Modules of Nigericin, Monensin, and Nanchangmycin Biosynthesis Inactive domains are shaded gray and are named in italics, AT domains specific for malonate extender units are shown in pink, and AT domains specific for methylmalonate extender units are shown in blue. Chemistry & Biology 2007 14, 703-714DOI: (10.1016/j.chembiol.2007.05.011) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 5 Docking Domains (A) Multiple alignment of C-terminal docking domains from modular PKSs demonstrates that the docking domains from NigA9 and MonA8 fall into the sequence group with DEBS 2. In contrast, the sequence of the C-terminal docking domain from NanA11 belongs within a putative second group of C-terminal docking domains. The extent of helix 3 (bar) along with the hydrophobic residues present in the docking interface (arrows) are indicated. (B) Multiple alignment of the N-terminal docking domain partners of the C termini shown in Figure 4A. MonKSX and NigKSX fit into the sequence group with DEBS 3, while NanA9 clusters with the second group of N-terminal docking domains. The extent of the coiled-coil region (bar) as well as the hydrophobic interface residues (arrows) are indicated. PIK, pikromycin; NYS, nystatin; RAPS, rapamycin; TYL, tylosin; RIF, rifamycin; OLEA; oleandomycin; DEBS, erythromycin. Chemistry & Biology 2007 14, 703-714DOI: (10.1016/j.chembiol.2007.05.011) Copyright © 2007 Elsevier Ltd Terms and Conditions