Chapter 13: I/O Systems.

Slides:



Advertisements
Similar presentations
I/O Systems & Mass-Storage Systems
Advertisements

Chapter 6 I/O Systems.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 13: I/O Systems I/O Hardware Application I/O Interface.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem.
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Jan 2, 2005 Chapter 13: I/O Systems I/O Hardware.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 13: I/O Systems.
I/O Hardware n Incredible variety of I/O devices n Common concepts: – Port – connection point to the computer – Bus (daisy chain or shared direct access)
04/16/2010CSCI 315 Operating Systems Design1 I/O Systems Notice: The slides for this lecture have been largely based on those accompanying an earlier edition.
I/O Systems CS 3100 I/O Hardware1. I/O Hardware Incredible variety of I/O devices Common concepts ◦Port ◦Bus (daisy chain or shared direct access) ◦Controller.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
I/O Systems CSCI 444/544 Operating Systems Fall 2008.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
Copyright ©: Nahrstedt, Angrave, Abdelzaher
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 13+14: I/O Systems and Mass- Storage Structure I/O Hardware Application I/O.
NETW 3005 I/O Systems. Reading For this lecture, you should have read Chapter 13 (Sections 1-4, 7). NETW3005 (Operating Systems) Lecture 10 - I/O Systems2.
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Jan 2, 2005 Chapter 13: I/O Systems I/O Hardware.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem.
Interrupts and DMA CSCI The Role of the Operating System in Performing I/O Two main jobs of a computer are: –Processing –Performing I/O manage and.
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 AE4B33OSS Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O.
I/O Systems I/O Hardware Application I/O Interface
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 13: I/O Systems.
I/O management is a major component of operating system design and operation Important aspect of computer operation I/O devices vary greatly Various methods.
Cosc 4740 Chapter 12 I/O Systems. I/O Hardware Incredible variety of I/O devices –Storage –Transmission –Human-interface.
Chapter 13: I/O Systems. 13.2/34 Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem.
12/8/20151 Operating Systems Design (CS 423) Elsa L Gunter 2112 SC, UIUC Based on slides by Roy Campbell, Sam King,
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 13: I/O Systems I/O Hardware Application I/O Interface.
Chapter 13 – I/O Systems (Pgs ). Devices  Two conflicting properties A. Growing uniformity in interfaces (both h/w and s/w): e.g., USB, TWAIN.
XE33OSA Chapter 13: I/O Systems. 13.2XE33OSA Silberschatz, Galvin and Gagne ©2005 Chapter 13: I/O Systems I/O Hardware Application I/O Interface Kernel.
CENG334 Introduction to Operating Systems Erol Sahin Dept of Computer Eng. Middle East Technical University Ankara, TURKEY URL:
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Jan 2, 2005 Chapter 13: I/O Systems I/O Hardware.
Silberschatz, Galvin and Gagne ©2009 Edited by Khoury, 2015 Operating System Concepts – 9 th Edition, Chapter 13: I/O Systems.
Chapter 13: I/O Systems Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 13: I/O Systems Overview I/O Hardware Application.
Input Output Techniques Programmed Interrupt driven Direct Memory Access (DMA)
بسم الله الرحمن الرحيم MEMORY AND I/O.
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 12: I/O Systems I/O hardwared Application I/O Interface Kernel I/O.
CMSC 421 Section 0202 I/O Systems Chapter 13: I/O Systems.
1 Device Controller I/O units typically consist of A mechanical component: the device itself An electronic component: the device controller or adapter.
Chapter 13: I/O Systems.
I/O Systems Shmuel Wimer prepared and instructed by
Chapter 13: I/O Systems.
Chapter 13: I/O Systems.
Lecture 13 Input/Output (I/O) Systems (chapter 13)
Architectures of Digital Information Systems Part 1: Interrupts and DMA dr.ir. A.C. Verschueren Eindhoven University of Technology Section of Digital.
Module 12: I/O Systems I/O hardware Application I/O Interface
Chapter 13: I/O Systems Modified by Dr. Neerja Mhaskar for CS 3SH3.
I/O SYSTEMS MANAGEMENT Krishna Kumar Ahirwar ( )
Chapter 13: I/O Systems Source & Copyright: Operating System Concepts, Silberschatz, Galvin and Gagne.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
Operating Systems (CS 340 D)
CS 286 Computer Organization and Architecture
Chapter 13: I/O Systems.
CSCI 315 Operating Systems Design
I/O Systems.
I/O Systems I/O Hardware Application I/O Interface
Operating System Concepts
13: I/O Systems I/O hardwared Application I/O Interface
Selecting a Disk-Scheduling Algorithm
Chapter 13: I/O Systems.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
Chapter 13: I/O Systems.
Chapter 12: I/O Systems.
Chapter 13: I/O Systems.
Chapter 13: I/O Systems I/O Hardware Application I/O Interface
Operating Systems I/O System Alok Kumar Jagadev.
Module 12: I/O Systems I/O hardwared Application I/O Interface
Chapter 13: I/O Systems “The two main jobs of a computer are I/O and [CPU] processing. In many cases, the main job is I/O, and the [CPU] processing is.
Presentation transcript:

Chapter 13: I/O Systems

Chapter 13: I/O Systems Overview I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations STREAMS Performance

Objectives Explore the structure of an operating system’s I/O subsystem Discuss the principles of I/O hardware and its complexity Provide details of the performance aspects of I/O hardware and software

Overview I/O management is a major component of operating system design and operation Important aspect of computer operation I/O devices vary greatly Various methods to control them Performance management New types of devices frequent Ports, busses, device controllers connect to various devices Device drivers encapsulate device details Present uniform device-access interface to I/O subsystem

I/O Hardware Incredible variety of I/O devices Storage Transmission Human-interface Common concepts – signals from I/O devices interface with computer Port – connection point for device eg serial port Bus –set of wires and a rigidly defined protocol that specifies a set of messages. Daisy chain is a chain of devices connected to the computer system PCI bus common in PCs and servers, PCI Express (PCIe) expansion bus connects relatively slow devices Controller (host adapter) – electronics that operate port, bus, device Sometimes integrated Sometimes separate circuit board (host adapter) Contains processor, microcode, private memory, bus controller, etc Some talk to per-device controller with bus controller, microcode, memory, etc

A Typical PC Bus Structure SCSI-Small Computer System Interface

Disk Controller

How does the processor give commands and data to a controller? Controller has one or more registers for data and control signals. The processor communicates with the controller by reading and writing bit patterns in these registers. This is done by special I/O instructions that specify transfer of byte to an I/O port address-programmed I/O Which in turn triggers bus lines to select the proper device and move bits into or out of device registers Alternatively memory mapped I/O can be used by device controllers

Device I/O Port Locations on PCs (partial) PCs used both programmed I/O and memory mapped I/O.

Registers used in I/O port Status: contains bits that can be read by the host. Eg:- whether a command completed Control: written by the host to start a command o to change the mode of a device: Eg:- changing the type of communication Data-in: read by host to get input Data-out: written by host to send output

Polling Polling is done by handshaking Example 2 bits are used to coordinate the producer consumer relationship between the controller and host. Buzy bit with controller and command ready bit by host For each byte of I/O The host repeatedly reads the busy bit of the controller until it becomes clear. When clear, the host writes in the command register and writes a byte into the data-out register. The host sets the command-ready bit (set to 1). When the controller senses command-ready bit is set, it sets busy bit. The controller reads the command register and since write bit is set, it performs necessary I/O operations on the device. If the read bit is set to one instead of write bit, data from device is loaded into data-in register, which is further read by the host. The controller clears the command-ready bit once everything is over, it clears error bit to show successful operation and reset busy bit (0). Step 1 is busy-wait cycle to wait for I/O from device Reasonable if device is fast But inefficient if device slow

Interrupts Polling can happen in 3 instruction cycles Read status, logical-and to extract status bit, branch if not zero How to be more efficient if non-zero infrequently? CPU Interrupt-request line triggered by I/O device Checked by processor after each instruction Interrupt handler receives interrupts Maskable to ignore or delay some interrupts Interrupt vector to dispatch interrupt to correct handler Context switch at start and end Based on priority Some nonmaskable Interrupt chaining if more than one device at same interrupt number

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table

Interrupts (Cont.) Interrupt mechanism also used for exceptions Terminate process, crash system due to hardware error Page fault executes when memory access error System call executes via trap to trigger kernel to execute request Multi-CPU systems can process interrupts concurrently If operating system designed to handle it Used for time-sensitive processing, frequent, must be fast

Direct Memory Access Used to avoid programmed I/O (one byte at a time) for large data movement Requires DMA controller Bypasses CPU to transfer data directly between I/O device and memory OS writes DMA command block into memory Source and destination addresses Read or write mode Count of bytes Writes location of command block to DMA controller Bus mastering of DMA controller – grabs bus from CPU Cycle stealing from CPU but still much more efficient When done, interrupts to signal completion Version that is aware of virtual addresses can be even more efficient - DVMA

Six Step Process to Perform DMA Transfer

Application I/O Interface I/O system calls encapsulate device behaviors in generic classes Device-driver layer hides differences among I/O controllers from kernel New devices talking already-implemented protocols need no extra work Each OS has its own I/O subsystem structures and device driver frameworks Devices vary in many dimensions Character-stream or block Sequential or random-access Synchronous or asynchronous (or both) Sharable or dedicated Speed of operation read-write, read only, or write only