Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.

Slides:



Advertisements
Similar presentations
Welcome to Who Wants to be a Millionaire
Advertisements

How do you play weak & strong draws? Strategy: No Limit.
Advanced strategies for postflop play Strategy: SnG / tournaments.
Who Wants to be a Millionaire? Adapted from TCEA 2002
Statistics Part II Math 416. Game Plan Creating Quintile Creating Quintile Decipher Quintile Decipher Quintile Per Centile Creation Per Centile Creation.
& dding ubtracting ractions.
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
Probability of Independent Events
You will need some paper!
Theoretical Probability
Welcome to Who Wants to be a Millionaire
AYP Federal Cap and Exceptions ESC Title I/Texas Assessment Conference AYP Presentation TEA Division of Performance Reporting December 11, 2006.
1 1  1 =.
Who Wants To Be A Millionaire?
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
Welcome to Who Wants to be a Millionaire
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
Welcome to Who Wants to be a Millionaire
Welcome to Who Wants to be a Millionaire
Advanced Strategies for Craps and Poker Billy J. Duke Joel A. Johnson.
Look at This PowerPoint for help on you times tables
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Chris Morgan, MATH G160 January 8, 2012 Lecture 13
Geometric Sequences Teacher Notes
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 15 Probability Rules!
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 15 Probability Rules!
50: $1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Zelda, continued. 2.Difficult homework 3 problem. 3.WSOP 2013 hand.
Intro to Probability & Games
Texas Holdem Poker With Q-Learning. First Round (pre-flop) PlayerOpponent.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Straight draws. 2.HW2 clarification. 3.Greenstein vs. Farha AA.
Introduction for Rotarians
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call? Let B = the amount bet to.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.
Penn Poker Fall Strategy Session Series
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
HOW TO PLAY POKER.
Presentation transcript:

Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning of Probability, axioms 5. Counting

Notes on the syllabus: a)No discussion section. b)Disregard prerequisites. c) hw1 is due Wed Jan 22. (Kh means King of hearts, 9s means 9 of spades, etc.) For next week: (i) Learn the rules of Texas Holdem. ( see and ) (ii) Read addiction handouts, addiction1.doc and addiction1.pdf at the course website, (iii) Download R and try it out. ( ) (iv) Read ch. 1 and 2 of the textbook. (v) If possible, watch High Stakes Poker (GSN) d) If you are the first to find an error in the book not on the error website, me and if youre right youll get +1 pt on the final exam for a rel. major error (or ¼ for a very minor error), but you get -¼ if youre wrong, for either type of error.

Wasicka/Gold/Binger Example Blinds: $200,000-$400,000 with $50,000 antes. Chip Counts: Jamie Gold$60,000,000 Paul Wasicka$18,000,000 Michael Binger$11,000,000 Payouts: 3rd place: $4,123,310. 2nd place: $6,102,499. 1st place: $12,000,000. Day 7, Hand 229. Gold: 4s 3c.Binger: Ah 10h. Wasicka: 8s 7s. Gold limps from the button and Wasicka limps from the small blind. Michael Binger raises to $1,500,000 from the big blind. Both Gold and Wasicka call and the flop comes 10c 6s 5s. Wasicka checks, Binger bets $3,500,000 and Gold moves all in. Wasicka folds and Binger calls. Binger shows Ah 10h and Gold turns over 4s 3c for an open ended straight draw. The turn is the 7c and Gold makes a straight. The river is the Qs and Michael Binger is eliminated in 3rd place.

Wasicka/Gold/Binger Example, Continued Gold: 4 3. Binger: A 10.Wasicka: 8 7. Flop: (Turn: 7. River: Q.) Wasicka folded?!? He had 8 7 and the flop was Worst case scenario: suppose he were up against 9 4 and 9 9. How could Wasicka win? 88 (3: 8 8, 8 8, 8 8 ) 77 (3) 44 (3) [Let X = non-49, Y = A2378JQK, and n = non-.] 4n Xn (3 x 32) 9 4n (3) 9 Yn (24). Total: 132 out of 903 = 14.62%.

Meaning of Probability. Notation: P(A) = 60%. A is an event. Not P(60%). Definition of probability: Frequentist: If repeated independently under the same conditions millions and millions of times, A would happen 60% of the times. Bayesian: Subjective feeling about how likely something seems. P(A or B) means P(A or B or both ) Mutually exclusive: P(A and B) = 0. Independent: P(A given B) [written P(A|B)] = P(A). P(A c ) means P(not A).