Volume 106, Issue 5, Pages (March 2014)

Slides:



Advertisements
Similar presentations
Fabio Trovato, Edward P. O’Brien  Biophysical Journal 
Advertisements

Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Volume 108, Issue 1, Pages (January 2015)
Volume 9, Issue 10, Pages (October 2002)
Volume 102, Issue 8, Pages (April 2012)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Volume 108, Issue 3, Pages (February 2015)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 108, Issue 6, Pages (March 2015)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Making Sense of Intrinsically Disordered Proteins
Effects of Hofmeister Ions on the α-Helical Structure of Proteins
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 24, Issue 4, Pages (April 2016)
Volume 13, Issue 9, Pages (December 2015)
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Volume 98, Issue 2, Pages (January 2010)
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Shu-Chun Cheng, Gu-Gang Chang, Chi-Yuan Chou  Biophysical Journal 
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Leonardus M.I. Koharudin, Angela M. Gronenborn  Structure 
Model Development for the Viral Kcv Potassium Channel
Yuan Yang, Chang Shu, Pingwei Li, Tatyana I. Igumenova 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Dániel Szöllősi, Gergely Szakács, Peter Chiba, Thomas Stockner 
The Arginine-Rich RNA-Binding Motif of HIV-1 Rev Is Intrinsically Disordered and Folds upon RRE Binding  Fabio Casu, Brendan M. Duggan, Mirko Hennig 
A Conformational Switch in the CRIB-PDZ Module of Par-6
Dynamic Motions of the HIV-1 Frameshift Site RNA
Volume 20, Issue 12, Pages (December 2012)
Marian Breuer, Kevin M. Rosso, Jochen Blumberger  Biophysical Journal 
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Supertertiary Structure of the MAGUK Core from PSD-95
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Ligand Binding to the Voltage-Gated Kv1
Functional Role of Ribosomal Signatures
Volume 21, Issue 6, Pages (June 2013)
Volume 17, Issue 10, Pages (October 2009)
Protein-Protein Docking: From Interaction to Interactome
Activation of the Edema Factor of Bacillus anthracis by Calmodulin: Evidence of an Interplay between the EF-Calmodulin Interaction and Calcium Binding 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Subdomain Interactions Foster the Design of Two Protein Pairs with ∼80% Sequence Identity but Different Folds  Lauren L. Porter, Yanan He, Yihong Chen,
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Volume 24, Issue 8, Pages (August 2016)
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Logan S. Ahlstrom, Osamu Miyashita  Biophysical Journal 
Volume 103, Issue 10, Pages (November 2012)
Conformational Transitions in Protein-Protein Association: Binding of Fasciculin-2 to Acetylcholinesterase  Jennifer M. Bui, Zoran Radic, Palmer Taylor,
Volume 19, Issue 7, Pages (July 2011)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 114, Issue 6, Pages (March 2018)
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Two Pathways Mediate Interdomain Allosteric Regulation in Pin1
Volume 27, Issue 7, Pages e5 (July 2019)
Volume 84, Issue 4, Pages (April 2003)
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Sebastian Fritsch, Ivaylo Ivanov, Hailong Wang, Xiaolin Cheng 
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Volume 98, Issue 2, Pages (January 2010)
Volume 109, Issue 12, Pages (December 2015)
Volume 98, Issue 4, Pages (February 2010)
Presentation transcript:

Volume 106, Issue 5, Pages 1142-1151 (March 2014) A Flexible Docking Scheme Efficiently Captures the Energetics of Glycan-Cyanovirin Binding  Ashini Bolia, Brian W. Woodrum, Angelo Cereda, Melissa A. Ruben, Xu Wang, S. Banu Ozkan, Giovanna Ghirlanda  Biophysical Journal  Volume 106, Issue 5, Pages 1142-1151 (March 2014) DOI: 10.1016/j.bpj.2014.01.040 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 (A) Crystal structure of P51G-m4-CVN (PDB ID: 2RDK) with dimannose bound. (B) Domain B of P51G-m4-CVN, with residues focused on in this study highlighted in yellow (blue, nitrogen atoms; red, oxygen atoms). (C) Domain B of CVN(mutDB) (PDB ID: 3CZZ), with residues that differ from those of P51G-m4-CVN highlighted in yellow. Domain B of CVN(mutDB) does not bind dimannose. (D) The sequences of the two mutants are shown aligned with domain A (black) and domain B (gray). The differences between P51G-m4-CVN and CVN(mutDB) in domain B are highlighted. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Flow chart of the flexible docking method. In our flexible docking approach using the PRS model, we generate an ensemble of receptor conformations through several steps: (i) sequentially exerting random external force on each single-residue of the CVN mutants, (ii) calculating the response fluctuation vector using the PRS method, (iii) constructing the low-resolution deformed structures (i.e., backbone) using the response vectors after each single residue perturbation, (iv) clustering the perturbed conformations using the k-clustering method, and (v) all-atom minimization of each clustered conformation. Once the MRCs ensemble is completed, we perform a docking simulation using the RosettaLigand option in the ROSETTA package for each minimized structure in the ensemble. (vi) Lastly, the binding energies of the CVN-dimannose complexes with the lowest Ligsum score are evaluated using X-Score. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 RosettaLigand energy scores (in kcal/mol) versus the RMSD of the docked complex for CVN mutants and dimannose sugar. P51G-m4-CVN (2RDK) is shown in blue circles and CVN(mutDB) (3CZZ) is shown in red squares. The funnel shape of the graph indicates good docking for P51G-m4-CVN. In agreement with experiments, P51G-m4-CVN-dimannose has a significantly low binding-energy score (−17.25 kcal/mol), whereas the complex of CVN(mutDB) (−9.28 kcal/mol) does not. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 1H-15N HSQC spectra of P51G-m4-CVN without dimannose (red) and with 12.5 molar equivalents of dimannose (black). To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 1H-15N HSQC spectra of (A) E41A and (B) E41G from titrations with increasing amounts of dimannose (red to black). The resonances are well dispersed and resemble that of the P51G-m4-CVN spectrum, indicating the two mutants are well folded. Example plots and fitting of molar equivalents versus normalized peak shift are shown for a single resonance (E41A in C; E41G in D). The average Kd values from the fits for E41A and E41G are 541 μM and 389 μM, respectively. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Thermal denaturation profiles of E41A (red circles), E41G (black squares), N53S (green triangles), T57A (blue upside-down triangles), and N42A (orange diamonds). The unfolding transitions were monitored at 202 nm from 4°C to 90°C using 20 μM protein in 15 mM potassium phosphate. The melting points are 53°C, 55°C, 53°C, 50.6°C, and 48°C, respectively. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 Main-chain and side-chain hydrogen-bond networks for the lowest-energy docked pose of (A) P51G-m4-CVN, (B) N42A, (C) E41A, (D) T57A, and (E) N53S. The dimannose sugar is shown in cyan, the residues that form a hydrogen bond with the sugar are shown in yellow, and the hydrogen bond is shown in magenta. To see this figure in color, go online. Biophysical Journal 2014 106, 1142-1151DOI: (10.1016/j.bpj.2014.01.040) Copyright © 2014 Biophysical Society Terms and Conditions