Learning Compositional Visual Concepts with Mutual Consistency Yunye Gong, Srikrishna Karanam, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Peter C. Doerschuk CVPR 2018 (spotlight) Concept GAN Presented by: Anand Bhattad (Vision Lunch, April 24 2018)
Image Translation (Pix to Pix and Cycle GAN) Pix2Pix Cycle GAN Source: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Cycle GAN
Source: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
New Unseen Samples from Translations? Colored Bags Edge Bags Colored Shoes Edge Shoes
Overview: Cycle GAN G1 F1 F2 G2 F2 G2 G1 F1 Cycle GAN: Learn and Compose concepts separately G1 F1 G2 F2 G1 F1 G2 F2
Losses: Adversarial G1 F1 G2 F2
Losses: Cycle Consistency
Can we generate sketch shoes by combining them? F1 F2 G2 F2 G2 G1 F1
Proposed Model: Concept GAN Cycle GAN: Learn and Compose concepts separately Concept GAN: Learn and Compose concepts simultaneously G1 F1 F2 F2 G2 F2 G2 G1 F1
Losses: Cycle Consistency
Losses: Cycle Consistency (Dist=4) G1 G1 F1 F1 F2 G2 F2 G2
Losses: Cycle Consistency (Dist=4) G1 G1 F1 F1 F2 G2 F2 G2
Losses: Cycle Consistency (Dist=4) G1 G1 F1 F1 F2 G2 F2 G2
Loss: Commutative G1 G1 F1 F1 F2 G2 F2 G2
Loss: Commutative G1 F1 F2 G2 F2 G2 G1 F1
Loss: Commutative G1 F1 F2 G2 F2 G2 G1 F1
Concept GAN
Comparing Results
Qualitative Results
Qualitative Results
Quantitative Results (Classification) Test Set: edge Shoes only Test Set: with eyeglasses, with bangs 18 60 (Accuracy if L_x removed)
Ablation Study
Re-ID
Generalizing to n(=3) Concepts
Learning from 2 attributes in 2 experiments Experiment1: (smile, eyeglasses) Experiment2: (bangs, eyeglasses) (smile, eyeglasses, bangs)
Yaxing Wang, Joost van de Weijer, Luis Herranz CVPR 2018 Mix and match networks: encoder-decoder alignment for zero-pair image translation Yaxing Wang, Joost van de Weijer, Luis Herranz CVPR 2018
Task Mix and match networks do not require retraining on unseen transformations, in contrast to unpaired translation alternatives (e.g. CycleGAN) leverages depth and semantic segmentation, ignoring the available RGB data and the corresponding pairs
Overview
Losses
Depth –to- Semantic segmentation
Depth-to-Semantic segmentation