Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.

Slides:



Advertisements
Similar presentations
Figure 2 ERG amplitude reduction in the follow-up study
Advertisements

Figure 1 Phenotype and genotype of an undiagnosed family with autosomal recessive spastic ataxia Phenotype and genotype of an undiagnosed family with autosomal.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure Cervical spinal cord area assessment
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Spinal cord lesions
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 2 Anti-LINGO-1 (Li81) does not affect cytokine production
Figure 1 Treg percentage and suppressive function increased during each round of Treg infusions Treg percentage and suppressive function increased during.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 3 Example of venous narrowing
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure 1. Prebiopsy and postbiopsy MRI
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 2 Correlation between total IgG levels and anti-AQP4 IgG titer
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure MRI and immunologic findings
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Example of venous narrowing
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 1 Family pedigree and MRI
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure Genetic deletion and MRI changes with EHMT1 deletion
Figure 1 Patients with acute anti–NMDA receptor encephalitis have marked hypometabolism of the visual cortical brain region correlating with the medial.
Figure 6 Cellular composition after tissue dissociation
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 1 MRI findings over time
Figure 2 Longitudinal relationship between CSF glucose and protein changes Longitudinal relationship between CSF glucose and protein changes Delta glucose.
Figure Brain MRI findings before and during appearance of lymphoproliferative disorder and pathology findings of cerebellar lesion Brain MRI findings before.
Figure 2 Kaplan-Meier survival graphs for 10-year risks of overall and post-90-day recurrent ischemic stroke (IS) and death Kaplan-Meier survival graphs.
Figure 1 Stacked bar chart depicts the proportion of patients with diffusion-weighted imaging (DWI)+ and DWI− scans categorized by index event type TIA.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure 2 Brain MRI features of 3 representatives patients with MS who experienced WNS after FTY withdrawal Brain MRI features of 3 representatives patients.
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure FDG-PET, lymph node biopsy, and brain MRI
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Time from incident ADS event to MS diagnosis
Figure 2 Patient 1 MRI evolution over time
Figure 1 MRI of both patients with IgG4-HP and spinal cord arteriography of the first patient MRI of both patients with IgG4-HP and spinal cord arteriography.
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 1 MRI at presentation The axial diffusion-weighted image (A) showed restricted diffusion throughout the cortical ribbon of the right hemisphere.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense in the center of the lesions. (B) Axial diffusion-weighted image sequences show hyperintense and hypointense lesions with restricted diffusion of water molecules. Sagittal (C) and Coronal (D) T1-weighted sequences show peripheral hyperintense rim surrounding a hypointense center and ring enhancement after intravenous infusion of paramagnetic contrast. Euripedes Gomes Carvalho Neto et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e519 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.