E.Bulyak, P.Gladkikh, M.Kuriki, T.Omori, L.Rinolfi,

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
2015/10/261 Present members : KEK: J.Urakawa, T.Omori, T.Suwada, T.Kamitani, BINP, Novosibirsk :Pavel Logachev (BINP), V.M.Strakhovenko, --- Hiroshima:
Frank Zimmermann, CLIC “Away Day” 28 March 2006  x * Limitations and Improvements Paths Damping Rings Maxim Korostelev, Frank Zimmermann.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
A.Variola Motivations…from D.Hitlin Talk The polarized positron source.
Workshop on New Aspects of Quark Nuclear Physics with Polarized Photons, Feb , Honolulu Possibility of bright, polarized high energy photon sources.
Concluding Remarks. 1) Take stock of the situation of the different machines, schemes, studies and R&D’s. 2) Gather information on the new technologies.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
A.Variola LCWS Bejing ERL Compton Scheme Status of the Orsay activity.
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
Canadian Light Source Commissioning Progress CLS Annual Users Meeting –
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
FCC-ee booster: preliminary design study Dmitry Shwartz BINP
Damping Ring Specifications S. Guiducci ALCPG11, 20 March 2011.
GDE FRANCE Why High brillance gun is good for the ERL scheme? And SC GUN? Alessandro Variola For the L.A.L. Orsay group.
A.Variola LCWS07 DESY-Hambourg Posipol A.Variola LCWS07 DESY-Hambourg Some Posipol 2007 numbers ~ 55 inscriptions 3 days workshop 8 sponsors Different.
FCC-ee injector complex including Booster Yannis Papaphilippou, CERN Thanks to: M.Aiba (PSI), Ö.Etisken (Ankara Un.), K.Oide (KEK), L.Rinolfi (ESI-JUAS),
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Compton based Polarized Positrons Source for ILC V. Yakimenko 1, D. Cline 2, Ya. Fukui 2, V. Litvinenko 1, I. Pogorelsky 1, S. Roychowdhury 3 1 BNL, 2.
Compton stacking ring update
10 mm is the same as... 1 cm. 20 mm is the same as... 2 cm.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
LHeC Sources Rinolfi CERN Thanks to:
Injector and positron source scheme. A first evaluation Thanks to O
Status of the CLIC main beam injectors
sx* Limitations and Improvements Paths
Luminosity Optimization for FCC-ee: recent results
Update of Damping Ring parameters
Injector Chain General and more about p-RCS
Injection facility for Novosibirsk Super Charm Tau Factory
BC2 Commissioning Parameters
Pol. positron generation scheme for ILC
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Beam Loading Effect in CEPC APDR
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
Capture and Transmission of polarized positrons from a Compton Scheme
CEPC Injector Damping Ring
ILC 3.2 km DR design based on FODO lattice (DMC3)
with contributions from
LCLS Commissioning Parameters
ILC 3.2 km DR design based on FODO lattice (DMC3)
A Design Study of a Compressor ring for
Damping Ring parameters for the new accelerating structure
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
CEPC Injector Linac beam dynamics
CEPC injector beam dynamics
Simulation check of main parameters (wd )
Polarized Positrons in JLEIC
J. Seeman Perugia Super-B Meeting June 2009
Damping Ring parameters for the new accelerating structure
Kicker and RF systems for Damping Rings
Kicker specifications for Damping Rings
CEPC injector beam dynamics
Damping Ring parameters with reduced bunch charge
Parameters Changed in New MEIC Design
MEIC New Baseline: Luminosity Performance and Upgrade Path
RF Parameters for New 2.2 km MEIC Design
MEIC New Baseline: Performance and Accelerator R&D
MEIC Alternative Design Part V
RF Parameters for New 2.2 km MEIC Design
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

E.Bulyak, P.Gladkikh, M.Kuriki, T.Omori, L.Rinolfi, J.Urakawa, A.Variola, F.Zimmermann. Compton Ring Lattice. Work supported by “Grant-in-Aid for Creative Research of JSPS (KAKENHI 17GS0210)” POSIPOL07. Compton Ring Lattice.

<>  15 MeV, E0 = 1300 MeV, <> / E0 = 1.15 %    n = 3  δ = 2 % 4.1 GeV + CO2  n = 19, δ = 1.6 % POSIPOL07. Compton Ring Lattice.

3 <  / δ < 4  τq1 / τq2 < 30  = 5.5 %,  / δ =3.33, δ = 1.65 %, τq = 1 s, tcycle = 6.67 ms  frep = 150 Hz tgen = 1 ms, τq = 1 s  Neb / Neb ≈ tgen / τq = 10-3 ;  Ntot / Neb = frep× Neb / Neb = 15 % nγ / Neb < 2.0 - 3.0; Ne+ = 1×1014  / s, kphef = 0.014  Nγ  tot = 1.5×1016 / s , Nγ = 1014 /cycle , Neb > Nγ / 2.5 = 4×1013 ; Istor ≈ 1 A  C ≈ 2 km POSIPOL07. Compton Ring Lattice.

1 = 7 %, δ1 = 2.1 %; 2 = 5.5 %, δ2 = 1.65 %; δ1 / δ2 = 1.27  C2 / C1 = 1.6 E = 2 × 50 MeV E0 = 1.3 GeV, <> / E0 = 1.15 %  E0 = 1.07 Gev , <> / E0 = 0.93 %  C1 / C2 = 1.5 POSIPOL07. Compton Ring Lattice.

θ = 1 / γ ≈ 4×10-4, Ra > θ × LIP / 2 = 6 mm; ph = 15 μ  mir = 2.7 mm, Rmir > 4.5×σmir ≈ 12 mm , φ = 100 POSIPOL07. Compton Ring Lattice.

E0 = 1.070 GeV, C ≈ 1200 m (h = 7500), φ = 100, Wlas = 2 J, nγ / Neb = 3, Ne+ = 1.05×1014 / s, 10 Mev ≤ εγ ≤ 20 MeV, Neb / Neb ≈ 17 % / s  POSIPOL07. Compton Ring Lattice.

POSIPOL07. Compton Ring Lattice. E = 1.070 GeV E = 1.300 GeV Parameter With chic. Without chic. Gamma’s energy, MeV 10 – 20 15 – 30 Circumference, m 800 1280 1200 1920 Energy acceptance, % 7 5.5 Laser flash energy, J 2 Laser waist (RMS), μ 15 Laser pulse length (RMS), mm 0.5 RF voltage, MV 2×40 20 2×50 30 Bunch length, mm 4 – 6 Bunch charge, nC Bunch spacing, cm 48 Stored current, A 1.25 Energy losses (SR + wigglers), keV 700 1000 Particles losses per sec., % < 20 Positron number per sec. 1.051014 POSIPOL07. Compton Ring Lattice.