LecturePLUS Timberlake1 Chapter 7 Gases The Combined Gas Law Volume and Moles (Avogadros Law) Partial Pressures.

Slides:



Advertisements
Similar presentations
Chapter 5 Chemical Reactions and Quantities
Advertisements

PV = nRT.
Gases Volume and Moles (Avogadro’s Law)
GASES Chapter 12 p
Chapter 11b Ideal Gas Laws
Lecture PLUS Timberlake 2000
Ch Gases III. Three More Laws Ideal Gas Law, Daltons Law, & Grahams Law.
1 GASES Honors Chemistry Chapter 11 2 KINETIC THEORY No attraction or repulsion Molecules are very small compared to distances separating them Constant,
Gases The Combined Gas Law Volume and Moles (Avogadro’s Law)
LecturePLUS Timberlake1 Gases Properties of Gases Gas Pressure.
Ideal Gas Law The equality for the four variables involved in Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Avogadro’s law can be written PV = nRT.
lecturePLUS Timberlake
Chapter 7 Gases 7.6 The Combined Gas Law.
1 Chapter 6 The States of Matter 6.8 The Combined Gas Law and Ideal Gas Law.
Gas Laws. What are gas laws??? What are gas laws??? Study of the relationships between pressure, volume, temperature, and amount of gases in a system.
Gas Laws NM Standards Students know how to apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas.
Ch – Ideal Gases -Avogadro’s Law (extension) -STP & molar volume of gas (review) -Ideal Gas Law (most important)
Chapter 7 Gases.
Sit down and get ready for the test, I will hand them out when the bell rings. You have until 8:10 DMA 3/21/11.
LecturePLUS Timberlake1 Chapter 9 Acids and Bases Ionization of Water The pH Scale.
LecturePLUS Timberlake1 Chapter 1 Measuring Temperature.
Volume and Moles (Avogadro’s Law)
Chemistry An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 6 Gases 6.8.
1 Chapter 6 Gases 6.8 Partial Pressures (Dalton’s Law) Copyright © 2009 by Pearson Education, Inc.
Temperature and Pressure
1 Chapter 6 Gases 6.6 The Combined Gas Law. 2 The combined gas law uses Boyle’s Law, Charles’ Law, and Gay-Lussac’s Law (n is constant). P 1 V 1 =P 2.
1 Chapter 6 The States of Matter 6.9 Partial Pressure (Dalton’s Law)
NOTES: 14.4 – Dalton’s Law & Graham’s Law
Chapter 6 Gases 6.1 Properties of Gases.
1 Lecture 6 Gases Properties of Gases Gas Pressure Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings.
Gas Laws What to do when conditions are ideal. Boyle’s Law What was the relationship between pressure and volume? When P Then V Algebraically this is.
GASES. General Properties of Gases There is a lot of “free” space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely.
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Partial Pressure (Dalton’s Law)
Kinetic Theory of Gases consists of small particles that move rapidly in straight lines. essentially no attractive (or repulsive) forces. are very far.
Section 13.2 Using Gas Laws to Solve Problems. Section 13.2 Using Gas Laws to Solve Problems 1.To understand the ideal gas law and use it in calculations.
Objectives To learn about atmospheric pressure and how barometers work
1 Chapter 11 Gases 11.7 Volume and Moles (Avogadro’s Law) Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
1.Explain Dalton’s Law 2.Use Dalton’s Law to solve a problem.
Gases The Combined Gas Law Volume and Moles (Avogadro’s Law) Partial Pressures (Dalton’s Law)
S yllabes of 331 chem course Kinetic theory. Forces between atoms, ions and molecules. Colligative properties. Vapor pressure and enthalpy. Boiling and.
1 Chapter 11 Gases Partial Pressure (Dalton’s Law) Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
General, Organic, and Biological Chemistry Copyright © 2010 Pearson Education, Inc. 1 Chapter 7 Gases 7.9 Partial Pressure (Dalton’s Law)
1 Chapter 7 Gases 7.1 Properties of Gases 7.2 Gas Pressure.
Chapter 6 Gases Properties of Gases 6.2 Gas Pressure Kinetic Theory of Gases A gas consists of small particles that move rapidly in straight lines.
Chapter 6 Gases 6.1 Properties of Gases.
Basic Chemistry Copyright © 2011 Pearson Education, Inc. 1 Chapter 11 Gases 11.7 Volume and Moles (Avogadro’s Law) Balloons rise in the air because helium.
Dalton’s law of partial pressure At constant volume and temperature, the total pressure of a mixture of gases is the sum of the partial pressures of all.
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
GAS LAWS. The Nature of Gases  Gases expand to fill their containers  Gases are fluid – they flow  Gases have low density  1/1000 the density of the.
Charles’ Law V 1 = V 2 T 1 T 2 Volume is directly proportional to temp (Pressure constant) Boyle’s Law P 1 V 1 = P 2 V 2 Pressure is inversely proportional.
Section 13.1 Describing the Properties of Gases Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
1 Chapter 6 Gases 6.1 Properties of Gases 6.2 Gas Pressure Copyright © 2009 by Pearson Education, Inc.
CHEMISTRY CATALYSTS Spring 2014 – Week 12 (Kinetics/Gas Laws)
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
1 Gases Properties of Gases Gas Pressure 2 Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D.
Lecture PLUS Timberlake Ideal Gas Law The equality for the four variables involved in Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Avogadro’s.
Avogadro’s Law The Ideal Gas Law Combined Gas Laws STP
8.8 Partial Pressure (Dalton’s Law)
Chapter 6 Gases 6.1 Properties of Gases 6.2 Gas Pressure.
GASES.
Gases in the Air The % of gases in air Partial pressure (STP)
Dalton’s Law of Partial Pressures
Gases in the Air The % of gases in air Partial pressure (STP)
LecturePLUS Timberlake
Partial Pressure (Dalton’s Law)
Combined Gas Law and Avogadro’s Hypothesis
Presentation transcript:

LecturePLUS Timberlake1 Chapter 7 Gases The Combined Gas Law Volume and Moles (Avogadros Law) Partial Pressures

LecturePLUS Timberlake2 Combined Gas Law P 1 V 1 = P 2 V 2 T 1 T 2 Rearrange the combined gas law to solve for V 2 P 1 V 1 T 2 = P 2 V 2 T 1 V 2 = P 1 V 1 T 2 P 2 T 1

LecturePLUS Timberlake3 Combined Gas Law P 1 V 1 = P 2 V 2 T 1 T 2 Isolate V 2 P 1 V 1 T 2 = P 2 V 2 T 1 V 2 = P 1 V 1 T 2 P 2 T 1

LecturePLUS Timberlake4 Learning Check C1 Solve the combined gas laws for T 2.

LecturePLUS Timberlake5 Solution C1 Solve the combined gas law for T 2. (Hint: cross-multiply first.) P 1 V 1 = P 2 V 2 T 1 T 2 P 1 V 1 T 2 = P 2 V 2 T 1 T 2 = P 2 V 2 T 1 P 1 V 1

LecturePLUS Timberlake6 Combined Gas Law Problem A sample of helium gas has a volume of L, a pressure of atm and a temperature of 29°C. What is the new temperature(°C) of the gas at a volume of 90.0 mL and a pressure of 3.20 atm?

LecturePLUS Timberlake7 Data Table Set up Data Table P 1 = atm V 1 = L T 1 = 302 K P 2 = 3.20 atm V 2 = 90.0 mL T 2 = ?? ??

LecturePLUS Timberlake8 Solution Solve for T 2 Enter data T 2 = 302 K x atm x mL = K atm mL T 2 = K = °C

LecturePLUS Timberlake9 Calculation Solve for T 2 T 2 = 302 K x 3.20 atm x 90.0 mL = 604 K atm mL T 2 = 604 K = 331 °C

LecturePLUS Timberlake10 Learning Check C2 A gas has a volume of 675 mL at 35°C and atm pressure. What is the temperature in °C when the gas has a volume of L and a pressure of 802 mm Hg?

LecturePLUS Timberlake11 Solution G9 T 1 = 308 KT 2 = ? V 1 = 675 mLV 2 = L = 315 mL P 1 = atm P 2 = 802 mm Hg = 646 mm Hg T 2 = 308 K x 802 mm Hg x 315 mL 646 mm Hg 675 mL P inc, T inc V dec, T dec = 178 K = - 95°C

LecturePLUS Timberlake12 Volume and Moles How does adding more molecules of a gas change the volume of the air in a tire? If a tire has a leak, how does the loss of air (gas) molecules change the volume?

LecturePLUS Timberlake13 Learning Check C3 True (1) or False(2) 1.___The P exerted by a gas at constant V is not affected by the T of the gas. 2.___ At constant P, the V of a gas is directly proportional to the absolute T 3.___ At constant T, doubling the P will cause the V of the gas sample to decrease to one-half its original V.

LecturePLUS Timberlake14 Solution C3 True (1) or False(2) 1. (2)The P exerted by a gas at constant V is not affected by the T of the gas. 2. (1) At constant P, the V of a gas is directly proportional to the absolute T 3. (1) At constant T, doubling the P will cause the V of the gas sample to decrease to one-half its original V.

LecturePLUS Timberlake15 Avogadros Law When a gas is at constant T and P, the V is directly proportional to the number of moles (n) of gas V 1 = V 2 n 1 n 2 initial final

LecturePLUS Timberlake16 STP The volumes of gases can be compared when they have the same temperature and pressure (STP). Standard temperature 0°C or 273 K Standard pressure 1 atm (760 mm Hg)

LecturePLUS Timberlake17 Learning Check C4 A sample of neon gas used in a neon sign has a volume of 15 L at STP. What is the volume (L) of the neon gas at 2.0 atm and –25°C? P 1 = V 1 = T 1 = K P 2 = V 2 = ?? T 2 = K V 2 = 15 L x atm x K = 6.8 L atm K

LecturePLUS Timberlake18 Solution C4 P 1 = 1.0 atm V 1 = 15 L T 1 = 273 K P 2 = 2.0 atm V 2 = ?? T 2 = 248 K V 2 = 15 L x 1.0 atm x 248 K = 6.8 L 2.0 atm 273 K

LecturePLUS Timberlake19 Molar Volume At STP 4.0 g He 16.0 g CH g CO 2 1 mole 1 mole1mole (STP) (STP)(STP) V = 22.4 L V = 22.4 L V = 22.4 L

LecturePLUS Timberlake20 Molar Volume Factor 1 mole of a gas at STP = 22.4 L 22.4 L and 1 mole 1 mole 22.4 L

LecturePLUS Timberlake21 Learning Check C5 A.What is the volume at STP of 4.00 g of CH 4 ? 1) 5.60 L2) 11.2 L3) 44.8 L B. How many grams of He are present in 8.0 L of gas at STP? 1) 25.6 g2) g3) 1.43 g

LecturePLUS Timberlake22 Solution C5 A.What is the volume at STP of 4.00 g of CH 4 ? 4.00 g CH 4 x 1 mole CH 4 x 22.4 L (STP) = 5.60 L 16.0 g CH 4 1 mole CH 4 B. How many grams of He are present in 8.0 L of gas at STP? 8.00 L x 1 mole He x 4.00 g He = 1.43 g He 22.4 He 1 mole He

LecturePLUS Timberlake23 Daltons Law of Partial Pressures Partial Pressure Pressure each gas in a mixture would exert if it were the only gas in the container Dalton's Law of Partial Pressures The total pressure exerted by a gas mixture is the sum of the partial pressures of the gases in that mixture. P T = P 1 + P 2 + P

LecturePLUS Timberlake24 Gases in the Air The % of gases in air Partial pressure (STP) 78.08% N mmHg 20.95% O mmHg 0.94% Ar 7.1 mmHg 0.03% CO mmHg P AIR = P N + P O + P Ar + P CO = 760 mmHg Total Pressure760 mm Hg

LecturePLUS Timberlake25 Learning Check C6 A. If the atmospheric pressure today is 745 mm Hg, what is the partial pressure (mm Hg) of O 2 in the air? 1) ) 156 3) 760 B. At an atmospheric pressure of 714, what is the partial pressure (mm Hg) N 2 in the air? 1) 557 2) 9.143) 0.109

LecturePLUS Timberlake26 Solution C6 A. If the atmospheric pressure today is 745 mm Hg, what is the partial pressure (mm Hg) of O 2 in the air? 2) 156 B. At an atmospheric pressure of 714, what is the partial pressure (mm Hg) N 2 in the air? 1) 557

LecturePLUS Timberlake27 Partial Pressures The total pressure of a gas mixture depends on the total number of gas particles, not on the types of particles. P = 1.00 atm 0.5 mole O mole He mole Ar 1 mole H 2

LecturePLUS Timberlake28 Health Note When a scuba diver is several hundred feet under water, the high pressures cause N 2 from the tank air to dissolve in the blood. If the diver rises too fast, the dissolved N 2 will form bubbles in the blood, a dangerous and painful condition called "the bends". Helium, which is inert, less dense, and does not dissolve in the blood, is mixed with O 2 in scuba tanks used for deep descents.

LecturePLUS Timberlake29 Learning Check C7 A 5.00 L scuba tank contains 1.05 mole of O 2 and mole He at 25°C. What is the partial pressure of each gas, and what is the total pressure in the tank?

LecturePLUS Timberlake30 Solution C7 P = nRT P T = P O + P He V 2 P T = 1.47 mol x L-atm x 298 K 5.00 L(K mol) =7.19 atm