Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 

Slides:



Advertisements
Similar presentations
Soyoun Kim, Jaewon Hwang, Daeyeol Lee  Neuron 
Advertisements

Volume 60, Issue 4, Pages (November 2008)
Interacting Roles of Attention and Visual Salience in V4
Mark Sayles, Ian M. Winter  Neuron 
Elizabeth V. Goldfarb, Marvin M. Chun, Elizabeth A. Phelps  Neuron 
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Neuronal Correlates of Metacognition in Primate Frontal Cortex
A Source for Feature-Based Attention in the Prefrontal Cortex
Jude F. Mitchell, Kristy A. Sundberg, John H. Reynolds  Neuron 
Volume 82, Issue 1, Pages (April 2014)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Cristopher M. Niell, Michael P. Stryker  Neuron 
Selective Attention in an Insect Visual Neuron
Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain  Marwan N. Baliki, Paul.
A Neural Signature of Divisive Normalization at the Level of Multisensory Integration in Primate Cortex  Tomokazu Ohshiro, Dora E. Angelaki, Gregory C.
Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors  Jose L. Herrero, Marc A. Gieselmann, Mehdi Sanayei,
Volume 97, Issue 4, Pages e6 (February 2018)
Michael L. Morgan, Gregory C. DeAngelis, Dora E. Angelaki  Neuron 
Volume 74, Issue 5, Pages (June 2012)
Volume 55, Issue 3, Pages (August 2007)
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Lior Cohen, Gideon Rothschild, Adi Mizrahi  Neuron 
Attentional Modulations Related to Spatial Gating but Not to Allocation of Limited Resources in Primate V1  Yuzhi Chen, Eyal Seidemann  Neuron  Volume.
Volume 49, Issue 3, Pages (February 2006)
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
Volume 95, Issue 1, Pages e3 (July 2017)
Volume 75, Issue 1, Pages (July 2012)
Contrast Adaptation and Representation in Human Early Visual Cortex
Adaptation Disrupts Motion Integration in the Primate Dorsal Stream
Volume 82, Issue 2, Pages (April 2014)
Huihui Zhou, Robert Desimone  Neuron 
Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action  Paul Cisek,
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Volume 28, Issue 15, Pages e5 (August 2018)
Independent Category and Spatial Encoding in Parietal Cortex
The Fine Structure of Shape Tuning in Area V4
Katherine M. Armstrong, Jamie K. Fitzgerald, Tirin Moore  Neuron 
Peter Janssen, Rufin Vogels, Yan Liu, Guy A Orban  Neuron 
Medial Axis Shape Coding in Macaque Inferotemporal Cortex
Uma R. Karmarkar, Dean V. Buonomano  Neuron 
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Feng Han, Natalia Caporale, Yang Dan  Neuron 
Volume 89, Issue 6, Pages (March 2016)
Neuronal Response Gain Enhancement prior to Microsaccades
James M. Jeanne, Tatyana O. Sharpee, Timothy Q. Gentner  Neuron 
Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations  Timothy J.
Volume 54, Issue 2, Pages (April 2007)
Guilhem Ibos, David J. Freedman  Neuron 
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Daniel E. Winkowski, Eric I. Knudsen  Neuron 
Stephen V. David, Benjamin Y. Hayden, James A. Mazer, Jack L. Gallant 
Marlene R. Cohen, John H.R. Maunsell  Neuron 
The Normalization Model of Attention
Sara E. Morrison, Alexandre Saez, Brian Lau, C. Daniel Salzman  Neuron 
Does Neuronal Synchrony Underlie Visual Feature Grouping?
Jude F. Mitchell, Kristy A. Sundberg, John H. Reynolds  Neuron 
John T. Serences, Geoffrey M. Boynton  Neuron 
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Farran Briggs, W. Martin Usrey  Neuron 
John B Reppas, W.Martin Usrey, R.Clay Reid  Neuron 
Tuned Normalization Explains the Size of Attention Modulations
Population Responses to Contour Integration: Early Encoding of Discrete Elements and Late Perceptual Grouping  Ariel Gilad, Elhanan Meirovithz, Hamutal.
The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space  Benjamin Y.
Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain  Marwan N. Baliki, Paul.
Supratim Ray, John H.R. Maunsell  Neuron 
Surround Integration Organizes a Spatial Map during Active Sensation
Matthew R. Roesch, Adam R. Taylor, Geoffrey Schoenbaum  Neuron 
Volume 66, Issue 1, Pages (April 2010)
Jacqueline R. Hembrook-Short, Vanessa L. Mock, Farran Briggs 
Presentation transcript:

Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4  Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron  Volume 61, Issue 6, Pages 952-963 (March 2009) DOI: 10.1016/j.neuron.2009.02.023 Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 1 Task Design (A) Schematic of the full trial. (B) Expansion of the pause period. Eight stimulus repetitions are presented during the pause period of each trial (only three are illustrated here). Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 2 Surround Stimulus Presence Enhances Attentional Modulation (A) Mean normalized population average response ±1 SEM to the center stimulus presented alone with attention directed to the center stimulus location (red) or to the surround stimulus location (gray). (B) Mean normalized population average response ±1 SEM to the center and surround stimulus presented together with attention directed to the center stimulus location (red) or to the surround stimulus location (gray). (C) Scatter plot of AIno surr versus AIwith surr. (D) Population histogram of the difference in AIs between the no-surround and with-surround conditions. Positive values indicate cells exhibiting stronger attentional modulation in the presence than absence of the surround stimulus. (E) Scatter plot of SMIattend center versus SMIattend surround. (F) Population histogram of the difference in SMIs between the attend-surround and attend-center conditions. Negative values indicate cells exhibiting stronger surround suppression in the attend-surround versus attend-center condition. Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 3 Single-Unit Examples and Population Results In each row, the left column shows the response evoked by the center stimulus ±1 SEM in the absence (red) and presence (blue) of the surround stimulus when attention was directed to the distant stimulus. Gray and purple lines show the responses in the baseline (0% center and 0% surround stimulus) and surround alone conditions (0% center stimulus, 100% surround stimulus), respectively. Responses in the attend-surround and attend-center condition are plotted in the center and right columns, respectively. Colored circles in the upper left corner of the single-unit example panels (left column) denote the icon used to represent these individual example cells in Figure 4. (A–C) Single-unit examples. (D) Mean normalized population average response. (E) Icons representing the stimulus configuration and location of attention in all conditions plotted in panels (A)–(D). Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 4 Attention to the Center and Surround Stimulus Modulates Surround Modulation (A) Scatter plot of SMIattend distant versus SMIattend surround. (B) Scatter plot of SMIattend distant versus SMIattend center. (C) Population histogram of the difference in SMIs between the attend-distant and attend-surround conditions. Negative values indicate cells exhibiting stronger surround suppression in the attend-surround versus attend-distant condition. (D) Population histogram of the difference in SMIs between the attend-distant and attend-center conditions. Positive values indicate cells exhibiting stronger surround suppression in the attend-distant versus attend-center condition. Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 5 Time Course of Attention-Dependent Modulation of Surround Suppression Attend-distant (blue), attend-center (purple), and attend-surround (red) SMIs plotted in nonoverlapping 40 ms time bins. Index values plotted at the center of each time bin. Colored asterisks denote index values significantly different from zero. Black asterisks denote significant differences between attend-distant and attend-center (top row) or attend-distant and attend-surround (bottom row). Error bars represent ±1 SEM. Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 6 Results Are Similar across Contrast (A–E) Left column plots the mean normalized population response ±1 SEM to the center stimulus in the absence (red) and presence (blue) of the surround stimulus when attention is directed to the distant stimulus. The responses in the attend-surround and attend-center condition are plotted in the center and right columns, respectively. (A) Center stimulus contrast 99%. (B) 57%. (C) 33%. (D) 19%. (E) 11%. (F) Contrast response functions illustrating the mean response as a function of center stimulus contrast in the absence (red) and presence (blue) of the surround stimulus. Neuron 2009 61, 952-963DOI: (10.1016/j.neuron.2009.02.023) Copyright © 2009 Elsevier Inc. Terms and Conditions