Gas Law Properties of gases: Kinetic Theory Compressible Expand

Slides:



Advertisements
Similar presentations
GAses.
Advertisements

Gases.
Gases.
GASES Chapter 5.
CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY
Gases.
Properties of Gases.
The Gas Laws Chapter 14.
Gas Laws.
P V T Gas Laws.
GASES Chapter 14.
Gas Laws Lecture.
Gas Laws.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 A Gas 4 Uniformly fills any container. 4 Mixes completely with any other gas 4 Exerts.
Kinetic Molecular Theory of Gases and the Gas Laws
Unit 8 Gases.
Gas Laws Lesson 2.
Gas Clicker quiz.
Chemistry I Mr. Patel SWHS
The Gas Laws You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a.
GAS LAWS!.
Gases.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Ch. 10 – Part II Ideal Gas – is an imaginary gas that conforms perfectly to all the assumptions of the kinetic theory. A gas has 5 assumptions 1. Gases.
Kinetic Molecular Theory
Gases & Atmospheric Chemistry
Gases Chapter 14.
GASES Chemistry Properties of Gases Characteristics of Gases Fill their containers completely Have mass Can be compressed Exert pressure Mix rapidly.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Gas Laws.
Energy and Gases Kinetic energy: is the energy of motion. Potential Energy: energy of Position or stored energy Exothermic –energy is released by the substance.
Gases. Gases - Concepts to Master What unit of measurement is used for temperature when solving gas law problems? Why? Summarize the Kinetic Molecular.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass.
Chapter 14 – Gases Kinetic Molecular Theory (KMT) Defn – describes the behavior of gases in terms of particle motion Defn – describes the behavior of.
1 Chapter 5: GASES. 2  In this chapter we will:  Define units of pressure and volume  Explore the properties of gases  Relate how the pressure, volume,
Gases Chapter 13.
Gas Laws. Gas Pressure ____________ is defined as force per unit area. Gas particles exert pressure when they ____________ with the walls of their container.
Gases.
Chapter 12 Physical Characteristics of Gases. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Section 3.7—Gas Behavior How does the behavior of gases affect airbags? What is PRESSURE? Force of gas particles running into a surface.
All About Gases Advanced Chemistry. Demonstration #1 Inflating a Balloon Inflating a Balloon.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass Much less compared to liquids and solids Much less compared to liquids and solids.
Gas Laws and Gas Stoichiometry. Kinetic –Molecular Theory Particles of matter (solid, liquid, or gas) are always in motion. This motion has consequences.
Gases Dr. Chin Chu River Dell Regional High School
You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a gas.
Gas Laws. Elements that exist as gases at 25 0 C and 1 atmosphere.
GASES: GASES: General Concepts Sherrie Park Per. ¾ AP Chemistry.
Gas Laws Boyle ’ s Law Charles ’ s law Gay-Lussac ’ s Law Avogadro ’ s Law Dalton ’ s Law Henry ’ s Law 1.
Behavior of Gases  Gases behave much differently than liquids and solids and thus, have different laws.  Because gas molecules have no forces keeping.
The Gas Laws A Tutorial on the Behavior of Gases..
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Gases Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws.
KINETIC MOLECULAR THEORY Kinetic Molecular Theory A theory that explains the physical properties of gases by describing the behavior of subatomic particles.
Combined Gas Law. How can you combine all three laws into one equation? Boyle’s LawP x V Charles’s LawV / T Gay-Lussac’s LawP / T.
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Kinetic-Molecular Theory and Gas Laws Kinetic-Molecular Theory and Gas Laws.
Gases. Ideal Gases Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory.  Gases consist of tiny.
GAS LAWS. The Nature of Gases  Gases expand to fill their containers  Gases are fluid – they flow  Gases have low density  1/1000 the density of the.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
THE GAS LAWS AVOGADRO’S, BOYLE’S, CHARLES’S, GAY-LUSSAC’S AND COMBINED GAS LAWS.
Gases Boyle’s Law. As the volume of a gas increases, the pressure decreases. –Temperature remains constant.
V. Combined and Ideal Gas Law
Gases Physical Characteristics & Molecular Composition
Gas Laws Unit 8.
“He could clear the savanna after every meal
Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws
Gas Laws 1.
Presentation transcript:

Gas Law Properties of gases: Kinetic Theory Compressible Expand Exert pressure on surroundings Miscible (ability to be mixed) Kinetic Theory Gases consist of discrete molecules that are very small and far apart relative to their size Molecules of a gas are in rapid constant motion and move in straight lines Collisions between gas molecules and with walls of a container are elastic (ie: total energy is conserved) Between collisions, molecules exert no attractive or repulsive forces on one another

Diffusion Gas molecules are constantly, randomly moving. Over time, gas particles will tend to move and try to take up as much space as possible, mixing with other gas molecules easily. Gas molecules will naturally try to move from higher concentrations to lower concentrations This property of gases is known as diffusion.

Gas Laws Useful variables: Pressure (P) – Defined as the force per unit area. Gases exert pressure because the molecules hit the surface of a container. Volume (V) – the amount of space that is occupied by a gas. Standard unit is Liter (L), but cubic meters (m3), and other units are often used

Temperature (T) – the actual definition of temperature is the measure of the average kinetic energy of the particles in a sample of matter. Mole (n) – the total number of moles of a gas present in a system.

Pressure Conversion There are a wide range of measurement styles used for pressure. All are common, but in the ideal gas law, only atmosphere is used. 1atm = 760 mmHg = 760 torr = 101.325 kPa = 1.01 x 105 Pa = 14.7 psi

Kelvin Temperature Temperature is measured using a variety of units, degrees Fahrenheit, degrees Celsius, and Kelvin. In the ideal gas law, only Kelvins are used TKelvin = TCelsius + 273.15

Standard Temperature and Pressure Also known as STP To make things easier, many experiments and calculations are performed at pre-set conditions of pressure and temperature At STP, the standard pressure is 1 atm. At STP, the standard temperature is 273K

Gas Law Boyle’s Law states that for a given amount of gas at a constant temperature, the volume of a gas varies inversely with it’s pressure. P1V1 = P2V2 Ex 1: A 15 liter sample of gas at 1.0 atm is compressed to 8.0 liters. What is the final pressure? Ex 2: A sample of gas held at 10 liters and 3.0 atm is allowed to expand and has a final pressure of 1.0 atm. What is the final volume of the gas?

Gas Law Charles’ Law states that the volume of a gas at constant pressure is directly proportional to the temperature. V1/T1 = V2/T2 Ex1: A balloon has a volume of 0.75 L. The balloon is taken to a new room where the temperature is 20oC. The balloon shrinks to a volume of 0.58 L. What was the original temperature of the balloon? Ex2: On a cold day of 45oF, a girl blows up a balloon to 0.5 L. If the day warms up to 60oF, what will be the new volume of the balloon?

Gas Law Gay-Lussac’s Law states that the pressure of a gas at constant volume is directly proportional to the temperature. P1/T1 = P2/T2 Ex1: Consider a container with a volume of 22.4 L filled with a gas at 1.00 atm at 273 K. What will be the new pressure if the temperature increases to 298 K? Ex2: A container is initally at 47 mm Hg and 77 K (liquid nitrogen temperature.) What will the temperature be when the pressure raises to 200 mm Hg?

Combined Gas Law The Combined Gas Law brings together Boyle’s, Charles’, and Gay-Lussac’s Laws to help us see how pressure, temperature, and volume of a gas are affected when all three are allowed to change for a fixed mole quantity of a gas. P1V1 = P2V2 T1 T2

Ex: a balloon contains 1L of gas at 1atm of pressure and 298K temperature. If the temperature of the gas was raised to 400K and the new pressure was found to be 1.1atm, what is the new volume of the balloon?

Gas Law Avogadro’s Principle states that equal volumes of gases at the same temperature and pressure contain equal numbers of particles. At standard temperature and pressure (STP) conditions (0.0oC, and 1atm), 1mole of any gas will occupy 22.4L. Ex1: Calculate the volume that 0.881 moles of a gas at STP will occupy. Ex2: At STP, a gas occupies 16L of space. How many moles of the gas are there?`

Ideal Gas Law The Ideal Gas Law is the combined application of Avogadro’s, Boyle’s, Charles’, and Gay-Lussac’s Laws. PV = nRT P = Pressure T = Temperature V = Volume R = Ideal Gas Constant n = Moles

Universal Gas Constant Often called the “ideal gas constant,” R is an experimentally derived number that allows the ideal gas equation (among other complex equations) to work. The actual numerical value R will depend upon the units used in measuring pressure, volume, and temperature. R = 0.08206 L.atm/mol.K = 8.314 J/mol.K = 8.314 L.kPa/mol.K = 62.4 L.mmHg/mol.K = 10.731 ft3.psi /R.lb-mol

Gas Law Ex1: Calculate the number of moles of a gas contained in a 3.0L vessel at 300K with a pressure of 1.50atm. Ex2: If I have 7.7 moles of gas at a pressure of 560 torr and at a temperature of 56oC, what is the volume of the container that the gas is in? Ex3: A gas inflates a bag up to 5.25L at STP. How much of this gas is present?

Quiz Which of the following is NOT stated in the kinetic theory a. Gas particles are small and far apart b. Gas particles exert no attractive or repulsive forces c. Gas particles collide inelastically d. Gas particles are in constant motion Standard pressure and temperature is defined as: a. 0 K and 700 torr b. 0 C and 760 torr c. 273 C and 760 atm d. 273 K and 760atm 380 mmHg pressure is equal to: a. .5 atm b. 1.0 atm c. .25 atm d. 2.0 atm 523 K is equal to a. 273 K b. 273oC c. 250 K d. 250oC

All of the following are NOT properties of a gas except for which one? a. gases are compressible b. gases cannot exert pressure c. gases do not move through space d. gases carry no energy The universal (ideal) gas constant is a. 0.008206 Latm/molK b. 0.08206 Latm/molK c. 8.206 J/molK d. 0.08206 J/molK 7. 10 moles of a gas are trapped in a 20L tank. A temperature of 200 K is measured. What is the pressure of the gas inside the tank? a. 20 atm b. 8 atm c. 12 atm d. 4 atm 8. Gas pressure is caused by: a.  gas molecules heating up    b. gas molecules reacting with other gas molecules    c. gas molecules hitting the walls of a container    d. gas molecules hitting other gas molecules

9. "Absolute zero" is equal to: a. 100 °F b. 10 K c. -273 °C d. 0 °C 10. Standard Pressure is equal to: a. 1 torr b. 273 kPa c. 760 torr d. 760 atm 11. A Kelvin temperature that is equivalent to 500 °C is: a.  -227 K b. 773 K c. 1260 K d. 227 K 12.When 0.250 moles of a gas is placed in a container at 25 °C, it exerts a pressure of 700 mm Hg. What is the volume of the container? a. 8.74 liters b. 0.0087 liters c. 0.557 liters d. 6.57 liters