R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B

Slides:



Advertisements
Similar presentations
Lower cervical spine facet cartilage thickness mapping
Advertisements

Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair  T.A. Holland, Ph.D., E.W.H. Bodde, M.D., V.M.J.I.
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging  B.G. Ashinsky, C.E. Coletta, M. Bouhrara,
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Anisotropy Induced by Macroscopic Boundaries: Surface-Normal Mapping using Diffusion-Weighted Imaging  Evren Özarslan, Uri Nevo, Peter J. Basser  Biophysical.
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies  I.N. Mukherjee, B.S., Y. Li, B.S., Y.C.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions  A. Abazari, J.A.W.
The groove model of osteoarthritis applied to the ovine fetlock joint
Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants  R.J.H. Custers, W.J.A. Dhert, D.B.F. Saris,
Chitosan–glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects 
MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers  Garry E. Gold, Deborah Burstein, Bernard Dardzinski, Phillip.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Quantitative assessment of articular cartilage morphology via EPIC-μCT
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
UTE bi-component analysis of T2* relaxation in articular cartilage
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
M. S. Laasanen, Ph. D. , J. Töyräs, Ph. D. , A. Vasara, M. D. , S
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Osteoarthritis and Cartilage
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Dr J. H. Naish, Ph. D. , Dr E. Xanthopoulos, Ph. D. , Dr C. E
J. A. Martin, A. Martini, A. Molinari, W. Morgan, W. Ramalingam, J. A
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces  E. Teeple, M.D., B.C. Fleming, Ph.D.,
V.K. Shekhawat, M.P. Laurent, C. Muehleman, M.A. Wimmer 
Lower cervical spine facet cartilage thickness mapping
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Lead accumulation in tidemark of articular cartilage
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Correlation between the MR T2 value at 4
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Same section position with spin-echo T1-weighted sequences at 1
Presentation transcript:

Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure  R. Meder, Ph.D., S.K. de Visser, B.Eng. (Med.), J.C. Bowden, B.Sc., T. Bostrom, Ph.D., J.M. Pope, D.Phil.  Osteoarthritis and Cartilage  Volume 14, Issue 9, Pages 875-881 (September 2006) DOI: 10.1016/j.joca.2006.03.002 Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Spin echo image of bovine articular cartilage in saline constrained between two Teflon® plugs to orient the normal to the articular surface at an angle of 55° to B0. Matrix size 128×128, FOV 20×20mm, slice thickness 2mm, TE/TR 13.3/500ms, acquired at 4.7T. The ROI used for DTI analysis is shown in white. The Teflon® plugs were screw threaded for easy removal from the NMR tube. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Diffusion tensor images taken from the ROI of Fig. 1, showing (A) the maximum and (B) the mean diffusivity as determined by the principal eigenvalues, (C) the angle of the principal diffusion eigenvector with respect to the normal to the articular surface (i.e. the direction of greatest diffusion) and (D) the FA. A mask has been used to remove signal from saline surrounding the sample and from subchondral bone. Sample orientation is the same as Fig. 1 in each case, with the articular surface facing towards bottom left. The white transect in image (A) shows the approximate location of the profiles presented in Fig. 3. Diffusion weighting parameters were: TE=13.3ms, TR=0.5s, Δ=8ms, δ=2ms, G=0.70Tm−1, and b=1.10×109s2m−1. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Depth normalised profile of the maximum diffusivity for diffusion tensor images acquired at 4.7T using the PGSE-prepared spin echo (PGSE) and interleaved diffusion (DIFFSE) imaging sequences (0 represents the articular surface and 1 represents the cartilage subchondral bone interface). Standard deviations show variations within the sample at each depth. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Average depth normalised profiles through the cartilage of the parameters imaged in Fig. 2, for the 14 samples scanned at 7.0T before and after trypsin degradation. (A) The maximum and (B) the mean diffusivity, (C) the angle of the principal diffusion eigenvector with respect to the normal to the articular surface and (D) the FA. Standard deviations show variation between the samples at each (normalised) depth. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Depth normalised profiles of the average percentage change in maximum diffusivity for the 14 trypsin-degraded cartilage samples. Error bars represent standard deviations between the 14 samples studied. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Profiles of absorbance in safranin-O stained samples, showing the variation of absorbance between untreated and trypsin treated cartilage samples with respect to normalised depth from the surface. Untreated samples show large variations in absorbance both between samples and as a function of depth. Trypsin treated samples show a complete lack of staining throughout sample. Trypsin treated: number of sections=12; Untreated: number of sections=6. Error bars are ±1 S.D. Osteoarthritis and Cartilage 2006 14, 875-881DOI: (10.1016/j.joca.2006.03.002) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions