INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

I NFORMATION CAUSALITY AND ITS TESTS FOR QUANTUM COMMUNICATIONS I- Ching Yu Host : Prof. Chi-Yee Cheung Collaborators: Prof. Feng-Li Lin (NTNU) Prof. Li-Yi.
Quantum Information Stephen M. Barnett University of Strathclyde The Wolfson Foundation.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Characterization and optimization of entangled states produced by a self-phase-locked OPO J. Laurat, G. Keller, J.A.O. Huguenin T. Coudreau, N. Treps,
Efficient Quantum State Tomography using the MERA in 1D critical system Presenter : Jong Yeon Lee (Undergraduate, Caltech)
Laurent Itti: CS599 – Computational Architectures in Biological Vision, USC Lecture 7: Coding and Representation 1 Computational Architectures in.
E n t a n g l e m e n t Teleportation Alice and Bob Nonlocal influences Fidelity (a) Paranormal phenomena (b) Men are from Mars. Women are from Venus (c)
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
1/25 Current results and future scenarios for gravitational wave’s stochastic background G. Cella – INFN sez. Pisa.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
A Passive Approach to Sensor Network Localization Rahul Biswas and Sebastian Thrun International Conference on Intelligent Robots and Systems 2004 Presented.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
Quantum info tools & toys for quantum gravity LOOPS `05 Daniel Terno Perimeter Institute.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
Stochastic Background Data Analysis Giancarlo Cella I.N.F.N. Pisa first ENTApP - GWA joint meeting Paris, January 23rd and 24th, 2006 Institute d'Astrophysique.
International Scientific Spring 2016
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
ISTITUTO NAZIONALE DI RICERCA METROLOGICA Exploiting hidden correlations: the illusionist game Alice Meda Marco Genovese.
Quantum nonlocality based on finite-speed causal influences
Role of entanglement in extracting information on quantum processes
Conservation of Vacuum in an Interferometer
Sub-Planck Structure and Weak Measurement
Maximally Multipartite Entangled States and Statistical Mechanics
G. Florio Dipartimento di Fisica, Università di Bari, Italy
Measurement Science Science et étalons
Matrix Product States in Quantum Metrology
Superconducting Qubits
Quantum Phase Transition of Light: A Renormalization Group Study
Using Quantum Means to Understand and Estimate Relativistic Effects
Fundamental bounds on stability of atomic clocks
Scheme for Entangling Micromeccanical Resonators
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Adaptive Beamforming for Target Tracking in Cognitive MIMO Sonar
Detector of “Schrödinger’s Cat” States of Light
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
10701 / Machine Learning.
Unconstrained distillation capacities of
New Results on Photothermal Effect: Size and Coating Effect
Elements of Quantum Mechanics
Amblard F.*, Deffuant G.*, Weisbuch G.** *Cemagref-LISC **ENS-LPS
Quantum Information with Continuous Variables
Quantum Information Theory Introduction
The Grand Unified Theory of Quantum Metrology
Quantum State and Process Measurement and Characterization
The Grand Unified Theory of Quantum Metrology
Quantum computation using two component Bose-Einstein condensates
RF readout scheme to overcome the SQL
COT 6200 Quantum Computing Fall 2010
Advanced Optical Sensing
Entangling Atoms with Optical Frequency Combs
Computational approaches for quantum many-body systems
Presentation transcript:

INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION Detecting “Schrödinger’s Cat” States of Light : Insights from the Retrodictive Approach Taoufik AMRI and Claude FABRE Quantum Optics Group, Laboratoire Kastler Brossel, France INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION OTTAWA, JUNE 2011

Introduction Preparations Measurements Choice “m” ? Result “n” ?

Predictive and Retrodictive Approaches POVM Elements describing any measurement apparatus Quantum state corresponding to the property checked by the measurement Born’s Rule (1926)

Quantum Properties of Measurements T. Amri et al., Phys. Rev. Lett. 106, 020502 (2011).

Properties of a measurement Retrodictive Approach answers to natural questions when we perform a measurement : What kind of preparations could lead to such a result ? The properties of a measurement are those of its retrodicted state !

Properties of a measurement Non-classicality of a measurement It corresponds to the non-classicality of its retrodicted state Gaussian Entanglement Quantum state conditioned on an expected result “n” Necessary condition !

Properties of a measurement Projectivity of a measurement It can be evaluated by the purity of its retrodicted state For a projective measurement The probability of detecting the retrodicted state Projective and Non-Ideal Measurement !

Properties of a measurement Fidelity of a measurement Overlap between the retrodicted state and a target state Meaning in the retrodictive approach For faithful measurements, the most probable preparation is the target state ! Preparation operator

Detector of “Schrödinger’s Cat” States of Light

Detector of “Schrödinger’s Cat” States of Light Scheme of the detector Photon counting Non-classical Measurements Projective but Non-Ideal ! Squeezed Vacuum

Detector of “Schrödinger’s Cat” States of Light Retrodicted States and Quantum Properties : Idealized Case Projective but Non-Ideal !

Applications in Quantum Metrology

Applications in Quantum Metrology General scheme of the Predictive Estimation of a Parameter We must wait the results of measurements !

Applications in Quantum Metrology General scheme of the Retrodictive Estimation of a Parameter

Applications in Quantum Metrology Fisher Information and Cramér-Rao Bound Relative distance Fisher Information

Applications in Quantum Metrology Fisher Information and Cramér-Rao Bound Any estimation is limited by the Cramér-Rao bound Fisher Information is the variation rate of retrodictive probabilities under a variation of the parameter Number of repetitions

Applications in Quantum Metrology Retrodictive Estimation of a Parameter Projective but Non-Ideal ! Predictive Retrodictive The result “n” is uncertain even though we prepare its target state The target state is the most probable preparation leading to the result “n”

Applications in Quantum Metrology Predictive and Retrodictive Estimations of a phase-space displacement The Quantum Cramér-Rao Bound is reached …

Conclusions and Perspectives Quantum Behavior of Measurement Apparatus Some quantum properties of a measurement are only revealed by its retrodicted state. T. Amri et al., Phys. Rev. Lett. 106, 020502 (2011). Exploring the use of non-classical measurements Retrodictive version of a protocol can be more relevant than its predictive version. T. Amri et al., in preparation (2011).

Acknowledgements Many thanks to Stephen M. Barnett and Luiz Davidovich for fruitful discussions !

Detector of “Schrödinger’s Cat” States of Light “We can measure the system with a given property, but we can also prepare the system with this same property !” Main Idea : Predictive Version VS Retrodictive Version

Detector of “Schrödinger’s Cat” States of Light Predictive Version : Conditional Preparation of SCS of light A. Ourjoumtsev et al., Nature 448 (2007)

Applications in Quantum Metrology Illustration : Estimation of a phase-space displacement Optimal Minimum noise influence Fisher Information is optimal only when the measurement is projective and ideal

Applications in Quantum Metrology Retrodictive Estimation of a Parameter No Pain, No Gain ! Maximally mixed ! Von Neumann Entropy Concavity