Wallpaper Symmetries CS 39 Carlo H. Séquin Florida 1999 CS 39 Wallpaper Symmetries Carlo H. Séquin EECS Computer Science Division University of California, Berkeley Back to TWO dimensions! Adding translator symmetry on (infinitely large) 2D “wall papers”.
Wallpaper Symmetries Worksheet Some examples of wall paper patterns. Granada 2003 Wallpaper Symmetries Some examples of wall paper patterns. How do we analyze them and compare them to one another? Worksheet
Take One Pattern at a Time . . . Granada 2003 Take One Pattern at a Time . . . Find rotation centers, mirror lines, glide axes ! Find rotation centers, mirror lines, glide axes
Take One Pattern at a Time . . . Pure Rotation: 3 Mirror Line Kaleidoscope Point: 3 >> Symm.: 3*3 Find all unique rotation centers, mirror lines, glide axes
Different Kaleidoscope Points Count different ones individually!
3 Different Kaleidoscope Points Symmetry: *442
Take One Pattern at a Time . . . Find rotation centers, mirror lines, glide axes
Take One Pattern at a Time . . . Pure Rotation: 2 Pure Rotation: 2 Glide Axis >> Symm.: 22X Find all unique rotation centers, mirror lines, glide axes
Take One Pattern at a Time . . . Find rotation centers, mirror lines, glide axes
Take One Pattern at a Time . . . Mirror Line Glide Axis >> Symm.: *X Find all unique rotation centers, mirror lines, glide axes
Different Glide Axes ? Find rotation centers, mirror lines, glide axes
Two Different Glide Axes Glide Axis Glide Axis >> Symm.: XX Find all unique rotation centers, mirror lines, glide axes