Chapter 4-1 Continuous Random Variables

Slides:



Advertisements
Similar presentations
Outline Abstract Introduction Methodology Results.
Advertisements

Chapter 10 馬可夫鏈 緒言 如果讀者仔細觀察日常生活中所發生的 諸多事件,必然會發現有些事件的未來 發展或演變與該事件現階段的狀況全然 無關,這種事件稱為獨立試行過程 (process of independent trials) ;而另一些 事件則會受到該事件現階段的狀況影響。
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
Time Sampling 時間取樣觀察法.
1 Advanced Chemical Engineering Thermodynamics Appendix BK The Generalized van der Waals Partition Function.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
CH22 可靠性加速測試方法 目的 基本假設 加速試驗模式 Inverse Power Model
Young/Freeman University Physics 11e. Ch 18 Thermal Properties of Matter © 2005 Pearson Education.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
實驗十一 有機酸在水與有機溶劑間之分佈.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Chapter 20 塑模動態觀點:狀態圖 Statechart Diagram. 學習目標  說明狀態圖的目的  定義狀態圖的基本記號  展示狀態圖的建構  定義活動、內部事件及遞延事件的狀態 圖記號.
Ch05 確定研究變項.
1 EnergyEnergy 能量. 2 哲音與吟詠 構成宇宙的元素? 構成宇宙的元素? 西方哲學家:亞理斯多德 西方哲學家:亞理斯多德 東方哲人:悉達多 東方哲人:悉達多 科學研究的範疇:(化學) 科學研究的範疇:(化學)
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
機率與分配 樣本空間與機率定義 機率的定義 機率的基本定理 隨機變數(Random Variable) 期望值與變異數 常用的機率分配.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
7.4 Lookback Options 指導教授:戴天時 報告者:陳博宇. 章節結構 Floating Strike Lookback Black-Scholes-Merton Equation Reduction of Dimension Computation.
第七章 連續機率分配.
Feature Motion for Monocular Robot Navigation. 單視覺機器人 – 追蹤 (tracking) 最常見的機器人導航技術 特徵點特性(特別 匹配性 抗破壞性) 特徵點取得(區塊 尺度不變)
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 3 Entropy : An Additional Balance Equation
Chapter 10 m-way 搜尋樹與B-Tree
C7_prob_2 1 Chap 7 機率論 隨機變數 (random variable) :一群數量的 代表,它們的值是由機會決定的,通常以 大寫英文字母表示 隨機變數分為離散型與連續型兩種。 機率分布 (probability distribution) : 描述 隨機變數值的機率變化 離散型變數的分布直接以.
P robability Continuous Random Variable Independent random variable Mean and variance 郭俊利 2009/03/30.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
Continuous Probability Distributions Chapter 會計資訊系統計學 ( 一 ) 上課投影片 Continuous Probability Distributions §Unlike a discrete random variable.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
1. 2 什麼是函數? 函數像一個魔術師的戲法箱,適當 “ 輸入 ” 就一定會有 “ 輸出 ” ,而且相同 的輸入必定會得到相同的輸出。
計算機概論 第6章 數位邏輯設計.
連續隨機變數 連續變數:時間、分數、重量、……
Continuous Random Variables and Probability Distributions
兩黨與多黨政黨體系 Lijphart (1984) Party Systems: Two-Party and Multiparty Patterns.
Ch05 確定研究變項.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
緣起 數學導論 吳定遠 水牛出版社 What is mathematics, Courant 定點定理 (固定點定理 ;不動點定理 )
Exponential Distribution & Poisson Process
1 Exponential Distribution & Poisson Process Memorylessness & other exponential distribution properties; Poisson process and compound P.P.’s.
Chapter 5 Laplace Transforms
Statistical Distributions
Chapter 4-1 Continuous Random Variables 主講人 : 虞台文.
7-1 Chapter 7 Special Continuous Distributions 7.1 Uniform Random Variable Def: A continuous RV X is said to have a uniform distribution if the pdf of.
Chapter 4-2 Continuous Random Variables 主講人 : 虞台文.
Chapter 5 Expectations 主講人 : 虞台文. Content Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables.
Chapter 3 Discrete Random Variables 主講人 : 虞台文. Content Random Variables The Probability Mass Functions Distribution Functions Bernoulli Trials Bernoulli.
Chapter 3-2 Discrete Random Variables 主講人 : 虞台文. Content Functions of a Single Discrete Random Variable Discrete Random Vectors Independent of Random.
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
Ch 8 實習.
Introduction to Probability Theory ‧ 2- 1 ‧ Speaker: Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang National Chung Cheng University Dept. CSIE, Computation.
More on Exponential Distribution, Hypo exponential distribution
Expectations of Random Variables, Functions of Random Variables
Chapter 4 Continuous Random Variables and Probability Distributions
The Exponential and Gamma Distributions
Exponential Distribution & Poisson Process
Pertemuan ke-7 s/d ke-10 (minggu ke-4 dan ke-5)
Chapter 5 Expectations 主講人:虞台文.
Handout Ch 5.
Presentation transcript:

Chapter 4-1 Continuous Random Variables 主講人:虞台文

Content Random Variables and Distribution Functions Probability Density Functions of Continuous Random Variables The Exponential Distributions The Reliability and Failure Rate The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions

Chapter 4-1 Continuous Random Variables Random Variables and Distribution Functions

The Temperature in Taipei 今天中午台北市氣溫為25C之機率為何? 今天中午台北市氣溫小於或等於25C之機率為何?

Renewed Definition of Random Variables A random variable X on a probability space (, A, P) is a function X : R that assigns a real number X() to each sample point , such that for every real number x, the set {|X()  x} is an event, i.e., a member of A.

The (Cumulative) Distribution Functions The (cumulative) distribution function FX of a random variable X is defined to be the function FX(x) = P(X  x), − < x < .

Example 1

Example 1

Example 1 R y

Example 1 R y

Example 1

Example 1 RY R R/2

Example 1

Example 1

Properties of Distribution Functions 0  F(x)  1 for all x; F is monotonically nondecreasing; F() = 0 and F() =1; F(x+) = F(x) for all x.

Definition  Continuous Random Variables A random variable X is called a continuous random variable if

Example 2

Chapter 4-1 Continuous Random Variables Probability Density Functions of Continuous Random Variables

Probability Density Functions of Continuous Random Variables A probability density function (pdf) fX(x) of a continuous random variable X is a nonnegative function f such that

Probability Density Functions of Continuous Random Variables A probability density function (pdf) fX(x) of a continuous random variable X is a nonnegative function f such that

Properties of Pdf's Remark: f(x) can be larger than 1.

Example 3

Example 3

Example 3

Example 3

Example 3 0.25926 1/3

Chapter 4-1 Continuous Random Variables The Exponential Distributions

The Exponential Distributions The following r.v.’s are often modelled as exponential: Interarrival time between two successive job arrivals. Service time at a server in a queuing network. Life time of a component.

The Exponential Distributions A r.v. X is said to possess an exponential distribution and to be exponentially distributed, denoted by X ~ Exp(), if it possesses the density

The Exponential Distributions : arriving rate : failure rate The Exponential Distributions pdf cdf

The Exponential Distributions : arriving rate : failure rate The Exponential Distributions pdf cdf

Memoryless or Markov Property

Memoryless or Markov Property

Memoryless or Markov Property Exercise: 連續型隨機變數中,唯有指數分佈具備無記憶性。

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t]. Nt t

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t]. Nt The next arrival t X Let X denote the time of the next arrival.

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t]. Nt The next arrival t 能求出P(X > t)嗎? X Let X denote the time of the next arrival.

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t]. Nt The next arrival t 能求出P(X > t)嗎? X Let X denote the time of the next arrival.

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate Let r.v. Nt denote #jobs arriving to a computer system in the interval (0, t]. Nt The next arrival t X Let X denote the time of the next arrival.

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate t1 t2 t3 t4 t5 The interarrival times of a Poisson process are exponentially distributed.

P(“No job”) = ? 10 secs Example 5  = 0.1 job/sec

Example 5  = 0.1 job/sec Method 1: P(“No job”) = ? 10 secs Example 5  = 0.1 job/sec Method 1: Let N10 represent #jobs arriving in the 10 secs. Method 2: Let X represent the time of the next arriving job.

Chapter 4-1 Continuous Random Variables The Reliability and Failure Rate

Definition  Reliability Let r.v. X be the lifetime or time to failure of a component. The probability that the component survives until some time t is called the reliability R(t) of the component, i.e., R(t) = P(X > t) = 1  F(t) Remarks: F(t) is, hence, called unreliability. R’(t) = F’(t) = f(t) is called the failure density function.

The Instantaneous Failure Rate 剎那間,ㄧ切化作永恆。

The Instantaneous Failure Rate t+t t

The Instantaneous Failure Rate

The Instantaneous Failure Rate 瞬間暴斃率h(t)

The Instantaneous Failure Rate 瞬間暴斃率h(t)

Example 6 以指數分配來model物件壽命之機率分配合理嗎? Show that the failure rate of exponential distribution is characterized by a constant failure rate. 以指數分配來model物件壽命之機率分配合理嗎?

More on Failure Rates t h(t) CFR 

More on Failure Rates t h(t) DFR IFR Useful Life CFR CFR 

? ? More on Failure Rates Exponential Distribution h(t)  t DFR IFR ? ? Useful Life CFR CFR 

Relationships among F(t), f(t), R(t), h(t)

Relationships among F(t), f(t), R(t), h(t)

Relationships among F(t), f(t), R(t), h(t)

Relationships among F(t), f(t), R(t), h(t) ? ? ?

Cumulative Hazard

Relationships among F(t), f(t), R(t), h(t)

Example 7

Chapter 4-1 Continuous Random Variables The Erlang Distributions

我的老照相機與閃光燈 它只能使用四次 每使用一次後轉動九十度 使用四次後壽終正寢

The Erlang Distributions time The lifetime of my flash (X) [0, ) fX(t)=? I(X)=?

The Erlang Distributions Nt ~ P(t) The Erlang Distributions Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then, cdf

The Erlang Distributions Nt ~ P(t) The Erlang Distributions Exercise of Chapter 2 Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then, pdf cdf

The r-Stage Erlang Distributions Consider a component subjected to an environment so that Nt, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the rth peak will cause a failure. Let X denote the lifetime of the component. Then, pdf cdf

The r-Stage Erlang Distributions pdf cdf

The r-Stage Erlang Distributions pdf

Example 8  = 9 jobs/hr. Let X represent the time of the 5th arrival. In a batch processing environment, the number of jobs arriving for service is 9 per hour. If the arrival process satisfies the requirement of a Poisson experiment. Find the probability that the elapse time between a given arrival and the fifth subsequent arrival is less than 10 minutes.  = 9 jobs/hr. Let X represent the time of the 5th arrival.

Chapter 4-1 Continuous Random Variables The Gamma Distributions

r為一正整數 欲將之推廣為正實數 Review pdf

Review    pdf

The Gamma Distributions pdf

Review

Chi-Square Distributions

Chapter 4-1 Continuous Random Variables The Gaussian or Normal Distributions

The Gaussian or Normal Distributions 德國的10馬克紙幣, 以高斯(Gauss, 1777-1855)為人像, 人像左側有一常態分佈之p.d.f.及其圖形。

The Gaussian or Normal Distributions pdf

The Gaussian or Normal Distributions  : mean  : standard deviation 2: variance The Gaussian or Normal Distributions Inflection point Inflection point

The Gaussian or Normal Distributions  : mean  : standard deviation 2: variance The Gaussian or Normal Distributions varying  varying 

The Gaussian or Normal Distributions  : mean  : standard deviation 2: variance The Gaussian or Normal Distributions Facts:

The Gaussian or Normal Distributions  : mean  : standard deviation 2: variance The Gaussian or Normal Distributions

Standard Normal Distribution

Table of N(0, 1) z

Table of N(0, 1) z Fact:

Probability Evaluation for N(, 2) x 

Probability Evaluation for N(, 2) x 

Probability Evaluation for N(, 2) Fact: Probability Evaluation for N(, 2) x  Z-Score:表距離中心若干個標準差

Example 9 X ~ N(12.00, 0.202)

X ~ N(12.00, 0.202) Example 9

X ~ N(12.00, 0.202) Example 9

X ~ N(12.00, 0.202) Example 9

Example 10  |X  | <  |X  | < 2 |X  | < 3

Example 10

Example 10

Example 10

Chapter 4-1 Continuous Random Variables The Uniform Distributions

The Uniform Distributions a b x f(x) pdf a b x F(x) 1 cdf

Summary The Exponential Distributions The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions