The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz

Slides:



Advertisements
Similar presentations
7.6 T HE N ATURAL B ASE, E. C OMPOUND I NTEREST The compound interest formula is: Where A is the total amount, P is the principal (original amount), r.
Advertisements

A logarithm with a base of e is called a natural logarithm and is abbreviated as “ln” (rather than as log e ). Natural logarithms have the same properties.
The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz
Warm Up Simplify. x 1. log 10 x 2. log b b 3w log z 3w3w z 4. b log b (x – 1 ) x – 1.
Chapter The Natural base, e.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-6 Exponential and Logarithmic Functions, Applications, and Models.
Exponential Functions An exponential function is of the form f (x) = a x, where a > 0. a is called the base. Ex. Let h(x) = 3.1 x, evaluate h(-1.8).
6.6 The Natural Base, e Objectives: Evaluate natural exponential and natural logarithmic functions.
6.6 The Natural Base, e Objectives: Evaluate natural exponential and
As n gets very large, interest is continuously compounded. Examine the graph of f(n)= (1 + ) n. The function has a horizontal asymptote. As n becomes infinitely.
6.6 The Natural Base, e Objectives: Evaluate natural exponential and natural logarithmic functions.
Simplify. 1. log10x 2. logbb3w 3. 10log z 4. blogb(x –1) 5.
The Natural Base, e Applications. The Formula for continuously compounded interest is:
Logarithmic Functions Recall that for a > 0, the exponential function f(x) = a x is one-to-one. This means that the inverse function exists, and we call.
Exponential Growth and Decay
The Natural Base, e 4-6 Warm Up Lesson Presentation Lesson Quiz
GRAPHING EXPONENTIAL FUNCTIONS f(x) = 2 x 2 > 1 exponential growth 2 24–2 4 6 –4 y x Notice the asymptote: y = 0 Domain: All real, Range: y > 0.
Objectives Use the number e to write and graph exponential functions representing real-world situations. Solve equations and problems involving e or natural.
How do we solve exponential and logarithmic equations and equalities?
Holt McDougal Algebra Exponential and Logarithmic Equations and Inequalities Solve logarithmic equations. Objectives.
Section 6: The Natural Base, e. U se the number e to write and graph exponential functions representing real-world situations. S olve equations and problems.
Holt McDougal Algebra The Natural Base, e Warm Up Simplify. x 1. log 10 x 2. log b b 3w log z 3w3w z 4. b log b (x – 1 ) x – 1 Slide 1 of 16.
Holt McDougal Algebra Exponential and Logarithmic Equations and Inequalities 4-5 Exponential and Logarithmic Equations and Inequalities Holt Algebra.
7-6 The Natural Base, e Entry Task Lesson 7.6 Practice Holt Algebra 2.
Warm Up Simplify. x 3w z x – 1 1. log10x 2. logbb3w 3. 10log z
Algebra 2 Properties of Exponential Functions Lesson 7-2 Part 2.
6.5 Applications of Common Logarithms Objectives: Define and use the common logarithmic function to solve exponential and logarithmic equations. Evaluate.
The Natural Base, e Essential Questions
The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz
Logarithmic Functions
ConcepTest • Section 1.4 • Question 1
Logarithmic Functions
Recall the compound interest formula A = P(1 + )nt, where A is the amount, P is the principal, r is the annual interest, n is the number of times the.
The Natural Base, e Warm Up Lesson Presentation Lesson Quiz
Splash Screen.
Splash Screen.
The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz
Chapter 5: Inverse, Exponential, and Logarithmic Functions
Ch. 8.5 Exponential and Logarithmic Equations
Objective Students will be able to graph exponential growth functions.
Exponential Growth and Decay
Inverse, Exponential, and Logarithmic Functions
5.3 Logarithmic Functions & Graphs
Exponential Functions
6.6 The Natural Base, e Objectives: Evaluate natural exponential and
Logarithmic Functions
Logarithmic Functions
Chapter 7 - Exponential and Logarithmic Functions
Base-e Exponential and Logarithmic Functions
Splash Screen.
Exponential Growth and Decay
Logarithmic Functions
The Natural Base, e 4-6 Warm Up Lesson Presentation Lesson Quiz
Logarithmic Functions
Exponential and Logarithmic Functions
Exponential Functions
Logarithmic Functions
Logarithmic Functions
Logarithmic Functions
The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz
The Natural Base, e 4-6 Warm Up Lesson Presentation Lesson Quiz
Warm-Up Evaluate log x for each value. x = 10 x = 0.1 x = -10 x = 1
LEARNING GOALS – LESSON 7.6
Logarithmic Functions
Warm up Honors algebra 2 2/25/19
C2D8 Bellwork: Fill in the table Fill in the blanks on the worksheet
Logarithmic Functions
U6D12 Have out: Bellwork: Fill in the table
Warm-Up Algebra 2 Honors 2/22/18
Logarithmic Functions
Presentation transcript:

The Natural Base, e 7-6 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2 Holt Algebra 2

Warm Up Simplify. x 3w z x – 1 3x – 2 1. log10x 2. logbb3w 3. 10log z 4. blogb(x –1) x – 1 3x – 2 5.

Objectives Use the number e to write and graph exponential functions representing real-world situations. Solve equations and problems involving e or natural logarithms.

Vocabulary natural logarithm natural logarithmic function

Recall the compound interest formula A = P(1 + )nt, where A is the amount, P is the principal, r is the annual interest, n is the number of times the interest is compounded per year and t is the time in years. n r Suppose that $1 is invested at 100% interest (r = 1) compounded n times for one year as represented by the function f(n) = P(1 + )n. n 1

As n gets very large, interest is continuously compounded As n gets very large, interest is continuously compounded. Examine the graph of f(n)= (1 + )n. The function has a horizontal asymptote. As n becomes infinitely large, the value of the function approaches approximately 2.7182818…. This number is called e. Like , the constant e is an irrational number. n 1

Exponential functions with e as a base have the same properties as the functions you have studied. The graph of f(x) = ex is like other graphs of exponential functions, such as f(x) = 3x. The domain of f(x) = ex is all real numbers. The range is {y|y > 0}.

The decimal value of e looks like it repeats: 2 The decimal value of e looks like it repeats: 2.718281828… The value is actually 2.71828182890… There is no repeating portion. Caution

Example 1: Graphing Exponential Functions Graph f(x) = ex–2 + 1. Make a table. Because e is irrational, the table values are rounded to the nearest tenth. x –2 –1 1 2 3 4 f(x) = ex–2 + 1 1.0 1.1 1.4 3.7 8.4

Check It Out! Example 1 Graph f(x) = ex – 3. Make a table. Because e is irrational, the table values are rounded to the nearest tenth. x –4 –3 –2 –1 1 2 f(x) = ex – 3 –2.9 –2.7 –0.3 4.4

A logarithm with a base of e is called a natural logarithm and is abbreviated as “ln” (rather than as loge). Natural logarithms have the same properties as log base 10 and logarithms with other bases. The natural logarithmic function f(x) = ln x is the inverse of the natural exponential function f(x) = ex.

The domain of f(x) = ln x is {x|x > 0}. The range of f(x) = ln x is all real numbers. All of the properties of logarithms from Lesson 7-4 also apply to natural logarithms.

Example 2: Simplifying Expression with e or ln A. ln e0.15t B. e3ln(x +1) ln e0.15t = 0.15t e3ln(x +1) = (x + 1)3 C. ln e2x + ln ex ln e2x + ln ex = 2x + x = 3x

Check It Out! Example 2 Simplify. a. ln e3.2 b. e2lnx ln e3.2 = 3.2 e2lnx = x2 c. ln ex +4y ln ex + 4y = x + 4y

The formula for continuously compounded interest is A = Pert, where A is the total amount, P is the principal, r is the annual interest rate, and t is the time in years.

Example 3: Economics Application What is the total amount for an investment of $500 invested at 5.25% for 40 years and compounded continuously? A = Pert A = 500e0.0525(40) Substitute 500 for P, 0.0525 for r, and 40 for t. A ≈ 4083.08 Use the ex key on a calculator. The total amount is $4083.08.

Check It Out! Example 3 What is the total amount for an investment of $100 invested at 3.5% for 8 years and compounded continuously? A = Pert A = 100e0.035(8) Substitute 100 for P, 0.035 for r, and 8 for t. A ≈ 132.31 Use the ex key on a calculator. The total amount is $132.31.

The half-life of a substance is the time it takes for half of the substance to breakdown or convert to another substance during the process of decay. Natural decay is modeled by the function below.

Example 4: Science Application Pluonium-239 (Pu-239) has a half-life of 24,110 years. How long does it take for a 1 g sample of Pu-239 to decay to 0.1 g? Step 1 Find the decay constant for plutonium-239. N(t) = N0e–kt Use the natural decay function. Substitute 1 for N0 ,24,110 for t, and for N(t) because half of the initial quantity will remain. 1 2 = 1e–k(24,110) 1 2

Simplify and take ln of both sides. Example 4 Continued ln = ln e–24,110k 1 2 Simplify and take ln of both sides. Write as 2 –1, and simplify the right side. 1 2 ln 2–1 = –24,110k –ln 2 = –24,110k ln2–1 = –1ln 2 = –ln 2 ln2 24,110 k = ≈ 0.000029

Step 2 Write the decay function and solve for t. Example 4 Continued Step 2 Write the decay function and solve for t. Substitute 0.000029 for k. N(t) = N0e–0.000029t 0.1 = 1e–0.000029t Substitute 1 for N0 and 0.01 for N(t). Take ln of both sides. ln 0.1 = ln e–0.000029t ln 0.1 = –0.000029t Simplify. ln 0.1 0.000029 t = – ≈ 80,000 It takes approximately 80,000 years to decay.

Step 1 Find the decay constant for Chromium-51. Check It Out! Example 4 Determine how long it will take for 650 mg of a sample of chromium-51 which has a half-life of about 28 days to decay to 200 mg. Step 1 Find the decay constant for Chromium-51. N(t) = N0e–kt Use the natural decay function. t. Substitute 1 for N0 ,28 for t, and for N(t) because half of the initial quantity will remain. 1 2 = 1e–k(28) 1 2

Check It Out! Example 4 Continued ln = ln e–28k 1 2 Simplify and take ln of both sides. Write as 2 –1 , and simplify the right side. 1 2 ln 2–1 = –28k –ln 2 = –28k ln 2 –1 = –1ln 2 = –ln 2. k = ≈ 0.0247 ln 2 28

Check It Out! Example 4 Continued Step 2 Write the decay function and solve for t. Substitute 0.0247 for k. N(t) = N0e–0.0247t Substitute 650 for N0 and 200 for N(t). 200 = 650e–0.0247t ln = ln e–0.0247t 650 200 Take ln of both sides. ln = –0.0247t 650 200 Simplify. t = ≈ 47.7 650 200 ln –0.0247 It takes approximately 47.7 days to decay.

Lesson Quiz Simplify. 1. ln e–10t 2. e0.25 lnt –10t t0.25 3. –ln ex –x 4. 2ln ex2 2x2 5. What is the total amount for an investment of $1000 invested at 7.25% for 15 years and compounded continuously? ≈ $2966.85 6. The half-life of carbon-14 is 5730 years. What is the age of a fossil that only has 8% of its original carbon-14? ≈ 21,000 yr