IAU Symposium 276 The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Torino, Oct 11, 2010 What can core accretion model.

Slides:



Advertisements
Similar presentations
Origin & Evolution of Habitable Planets: Astronomical Prospective D.N.C. Lin University of California, Santa Cruz, KIAA, Peking University, with Pathways.
Advertisements

Proto-Planetary Disk and Planetary Formation
Formation of Terrestrial Planets
Resonant Structures due to Planets Mark Wyatt UK Astronomy Technology Centre Royal Observatory Edinburgh.
Dust Growth in Transitional Disks Paola Pinilla PhD student Heidelberg University ZAH/ITA 1st ITA-MPIA/Heidelberg-IPAG Colloquium "Signs of planetary formation.
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Origins of Regular and Irregular Satellites ASTR5830 March 19, :30-1:45 pm.
Spin-Orbit Misalignment in Planetary Systems and Magnetic Star -- Disk Interaction IAU Astrophysics of Planetary Systems, Torino, Italy, Oct.14, 2010 Dong.
Planet Formation Topic: Formation of gas giant planets Lecture by: C.P. Dullemond.
Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Accretion of Planets Bill Hartmann.
Origins of Regular and Irregular Satellites ASTR5830 March 21, :30-1:45 pm.
Planetary Migration and Extrasolar Planets in the 2:1 Mean-Motion Resonance (short review) Renate Zechner im Rahmen des Astrodynamischen Seminars basierend.
The Grand Tack Scenario: Reconstructing The Migration History Of Jupiter And Saturn In The Disk Of Gas Alessandro Morbidelli (OCA, Nice) Kevin Walsh (SWRI,
Things that matter during the first stages of formation of giant planets Andrea Fortier Physikalisches Institut – UniBe 02/03/2011.
Planetary migration F. Marzari, Dept. Physics, Padova Univ.
STScI May Symposium 2005 Migration Phil Armitage (University of Colorado) Ken Rice (UC Riverside) Dimitri Veras (Colorado)  Migration regimes  Time scale.
F. Marzari, Dept. Physics, Padova Univ. The role of migration and planet-planet scattering in shaping planetary systems.
Tidal Dynamics of Transiting Exoplanets Dan Fabrycky UC Santa Cruz 13 Oct 2010 Photo: Stefen Seip, apod/ap At: The Astrophysics of Planetary Systems:
Formation of Planets around M & L dwarfs D.N.C. Lin University of California with AAS Washington Jan 11th, 2006 S. Ida, H. Li, S.L.Li, E. Thommes, I. Dobbs-Dixon,
Planet Formation with Different Gas Depletion Timescales: Comparing with Observations Huigen Liu, Ji-lin Zhou, Su Wang Dept. of Astronomy.
Planet Formation Topic: Formation of rocky planets from planetesimals Lecture by: C.P. Dullemond.
Dynamics of the young Solar system Kleomenis Tsiganis Dept. of Physics - A.U.Th. Collaborators: Alessandro Morbidelli (OCA) Hal Levison (SwRI) Rodney Gomes.
Extrasolar Planets More that 500 extrasolar planets have been discovered In 46 planetary systems through radial velocity surveys, transit observations,
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
1 Why exoplanets have so high eccentricities - By Line Drube - November 2004.
The `Nice’ Model Öpik approximation Planet migration in a planetesimal disk The Nice model Consequences of the Nice Model: Epoch of Late Heavy Bombardment,
Physics and Astronomy University of Utah Extreme Solar Systems II Fall 2011 The Evolution of Protoplanetary Disks and the Diversity of Giant Planets Diversity.
10Nov2006 Ge/Ay133 More on Jupiter, Neptune, the Kuiper belt, and the early solar system.
Origin of the Solar System
Report from the Oort Cloud Simulations of the Formation of the Comet Reservoir Luke Dones Hal Levison Paul Weissman Martin Duncan.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Ge/Ay133 What effects do 1-10 M Earth cores & Jovian planets have on the surrounding disk? Or, … Migration & Gaps.
Ge/Ay133 What have radial velocity surveys told us about (exo)-planetary science?
Eccentric Extrasolar Planets: The Jumping Jupiter Model HD217107b as imagined by Lynette Cook Stacy Teng TERPS Conference Dec. 9, 2004.
Ge/Ay133 How do planetesimals grow to form ~terrestrial mass cores?
The basics of terrestrial planet formation The origin of water 1798 engraving, Pass Lecture 3 Formation of the Terrestrial Planets and Origin of Earth’s.
Open problems in terrestrial planet formation
A coherent and comprehensive model of the evolution of the outer solar system Alessandro Morbidelli (OCA, Nice) Collaborators: R. Gomes, H. Levison, K.
 formation of non-resonant, multiple close-in super-Earths (which exist around 40-60% (?) of solar type stars)  N-body simulation (Ogihara & Ida 2009,
Giant Planet Accretion and Migration : Surviving the Type I Regime Edward Thommes Norm Murray CITA, University of Toronto Edward Thommes Norm Murray CITA,
Ge/Ay133 What effects do 1-10 M Earth cores have on the surrounding disk? Today = Gaps Wednesday = Migration (included here)
Mass Distribution and Planet Formation in the Solar Nebula Steve Desch School of Earth and Space Exploration Arizona State University Lunar and Planetary.
THE LATE HEAVY BOMBARDMENT AND THE FORMATION OF THE SOLAR SYSTEM
Astronomy 340 Fall December 2007 Lecture #27.
Type I Migration with Stochastic Torques Fred C. Adams & Anthony M. Bloch University of Michigan Fred C. Adams & Anthony M. Bloch University of Michigan.
Chapter 6.
Chaotic Case Studies: Sensitive dependence on initial conditions in star/planet formation Fred C. Adams Physics Department University of Michigan With:
Problems Facing Planet Formation around M Stars Fred C. Adams University of Michigan From work in collaboration with: P. Bodenheimer, M. Fatuzzo, D. Hollenbach,
Planets in Debris Disks Renu Malhotra University of Arizona Planet-Debris co-evolution Where can debris exist? Cases: Solar system, upsilon Andromedae,
How do “Habitable” Planets Form? Sean Raymond University of Washington Collaborators: Tom Quinn (Washington) Jonathan Lunine (Arizona)
Jean-Pierre needs to be brought up to date on what’s really going on in astronomy these days!
Sean Raymond University of Washington
Dynamics of comets and the origin of the solar system Origin of solar systems - 30/06/2009 Jean-Baptiste Vincent Max-Planck-Institut für Sonnensystemforschung.
Alice Quillen University of Rochester Department of Physics and Astronomy Oct, 2005 Submillimet er imaging by Greaves and collaborato rs.
The PSI Planet-building Code: Multi-zone, Multi-use S. J. Weidenschilling PSI Retreat August 20, 2007.
Astronomy 1010 Planetary Astronomy Fall_2015 Day-25.
Astronomy 340 Fall December 2007 Class #29.
Astronomy 1010-H Planetary Astronomy Fall_2015 Day-25.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Collision Enhancement due to Planetesimal Binary Formation Planetesimal Binary Formation Junko Kominami Jun Makino (Earth-Life-Science Institute, Tokyo.
The peculiar properties of the Solar System Alessandro Morbidelli CNRS/Observatoire de la Cote d'Azur, Nice, France.
Planet Formation in a disk with a Dead Zone Soko Matsumura (Northwestern University) Ralph Pudritz (McMaster University) Edward Thommes (Northwestern University)
Philippe Thébault Planet formation in binaries. Planet formation in binaries why bother? a majority of solar-type stars in multiple systems >90 detected.
The Solar System (Sections 4.1 and 4.3 only)
Making Our Solar System: Planetary Formation and Evolution
Protoplanetary Formation efficiency and time scale
How do planetesimals grow to
Dust Evolution & Planet Traps: Effects on Planet Populations
Population synthesis of exoplanets
Population synthesis of exoplanets
Presentation transcript:

IAU Symposium 276 The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Torino, Oct 11, 2010 What can core accretion model explain? What can not? population synthesis model M-a distributions: neglecting planet-planet interactions – Ida & Lin( ), Mordasini et al.(2009) Planet-planet scattering & collisions * e-distribution of jupiters * distant jupiters * close-in super-Earths – Ida & Lin (2010, ApJ ; 2011) Theoretical Predictions of M, a & e - Distributions of Jupiters/Super-Earths Shigeru Ida (Tokyo Institute of Technology) collaborators: Doug Lin (UCSC), E. Kokubo (NAOJ) M. Nagasawa, T. Sasaki, M. Ogihara (Tokyo Tech)

gas giants Core accretion model - sequential processes of different physics planetesimals ©Newton Press cores protoplanetary disk: H/He gas (99wt%) + dust grains (1wt%) core accretion gas envelope contraction runaway gas accretion >100M > M coagulation of planetesimals terrestrial planets gas accretion onto cores type I migration type II migrationorbital instability

Detailed studies on individual processes: important. But, NOT directly compared with obs. of exoplanets Population synthesis model: combine these processes to predict distributions of exoplanets explain existing data, predict future observations, & constrain a theoretical model for each process -- link theory and observation derive semi-analytical formulas for individual processes integrate equations of planetary growth/migration Population synthesis model Ida & Lin (2004a,b,2005,2008a,b,2010), Mordasini et al. (2009a,b)

The modeling of each process: must be based on detailed simulations (N-body, fluid dynamical,...) Otherwise, the results are meaningless But, the modeling must be simple enough, while it must properly reflect essential physical ingredients... Population synthesis model

Example of the integrations Ida & Lin (in prep) evolution type-I migration planetesimal accretion gas accretion onto a core type-II migration rocky planets gas giant icy planets disk gas disk edge type-I migration final state 0.6 sec on Mac air

one-planet-in-a-disk Simple one-planet-in-a-disk model Ida & Lin (2004a,b,2005,2008a,b), Mordasini et al. (2009a,b) neglect Dynamical Interactions (scattering, collisions) between planets w/o. dynamical interactions: e can NOT be evaluated & many problems evaluated must collide must scatter disk gas disk edge

Multiple-planets-in-a-disk Multiple-planets-in-a-disk model Ida & Lin (2010, 2011) Dynamical Interaction modeling: quantitatively reproduce N-body simulations DI between rocky/icy planets Resonant Trapping -- Sasaki, Stewart & Ida (2010, ApJ) RT & Giant Impacts -- Ida & Lin (2010, ApJ) DI between all planets [+ close encounters & ejection of giants (secular perturbations: not yet)] -- Ida & Lin (in prep) preliminary results: shown today - high e of jupiters & distant jupiters - multiple close-in super-Earths

Effects of Dynamical InteractionMultiple-planets-in-a-diskOne-planets-in-a-disk giant impacts resonant trapping ejection disk gas

evolutionfinal state rocky planets gas giant icy planets disk gas eccentricity distribution Dynamical Interaction eccentricity distribution Ida & Lin (in prep)

Population synthesis model Ida & Lin (in prep) 3000 systems M * = M * = M type-I: 0.1x Tanaka 45 min on Mac air

Eccentricity Distributions

- good agreement with observation Eccentricity excitation of jupiters by scattering - good agreement with observation Theory Observation

Theory(Ida & Lin) Theory Observation massive disks: multiple massive giants close scattering larger e for larger M Theory v r >1m/s & a <5AU Eccentricity vs. mass

disk mass dependence >1000M M M Disk mass [MMSN]

e vs. M : weak parameter dependences faster migration more limited gas accretion

Eccentricity vs. semimajor axis [jupiters] Theory Theory(Ida & Lin) Observation multiple giants < 10AU small e for a >10AU e max ~ V esc / V Kep ~2(a/1AU) 1/2 smaller e for smaller a At a < 0.05AU, e is tidally damped. -- tide is not included in the theoretical model e -- peaked at ~1AU

e vs. a : weak parameter dependences

Distant Jupiters (>100AU) by scattering

Theory disk instability can make core accretion? * in situ: impossible * outward mig. (Masset) ? * scattering: possible - systems - small e core scattering + gas accretion Ed Thommes N-body (*) ejected jupiters free floating planets - 6% of systems Distant jupiters with small e

Mass – Semimajor axis Distribution

Observation Theory (Ida & Lin) Broad distribution of a is explained by core accretion + type II mig. Remaining problems: 1)over-density at > 1AU migration trap? (dead zone, Paardekoopers torque...) 2) (hot jupiters) ~ 15% [theory] vs 1% [obs] disruption of HJs ? (no inner cavity, tide, evaporation,...) -- (other jupiters) ~25% [OK?] 3) planet desert at M ? -- observationally unclear faster type I migration? how to stop planetesimal/gas accretion? Mass vs. semimajor axis [jupiters]

M vs. a : parameter dependences close-in Super-Earths Jupiters 22%22% 25%26%33%16% 8%46% 16%39% 11%35% more limited gas accretion

Formation of close-in super-Earths

Observation Theory (Ida & Lin) 1) a peak at ~0.1AU simulations: disk inner edge at AU (hot jupiters ~ AU) 2) multiple, non-resonant 3) (close-in super-earths) ~ 26% These theoretical predictions are almost independent of type-I migration speed Mass vs. semimajor axis [super-earths]

e a [AU] t [yr] Formation of non-resonant, multiple, close-in super-Earths Ida & Lin (2010, ApJ) type-I migration (Tanaka x 0.1) giant impacts resonant trapping disk gas M [M ] disk edge too small to start gas accretion non-res. multiple super-Earths (~0.1AU, missed gas accretion) high abundance

M vs. a : parameter dependences close-in Super-Earths Jupiters 22%22% 25%26%33%16% 8%46% 16%39% 11%35% c

Disks forming super-Earths and Jupiters >100M rocky, 1-20M icy, 1-20M massive disks: form massive multiple jupiters destroy SEs medium-mass disks: retain Super-Earths - SE + J systems: only 9% Disk mass [MMSN]

Summary What observational data can core accretion model explain? What can not? using population synthesis model Distributions of Jupiters e-M, e-a -- well explained - refinement of scattering model is still needed. [talks by E. Ford, S. Chatterjee] M-a -- some problems remain - calculations with Paardekoopers type-I mig are needed [talk by W. Kley] distant Jupiters with small e -- possible Distributions of super-Earths look consistent but more obs. data are needed

Modeling of dynamical interactions among gas giants Nagasawa & Ida 2010 a - high eccentricities of jupiters - distant (>30AU) jupiters [direct imaging] - explained by scattering? e

3/18 If more than 3 giant planets form on circular orbits Orbit crossing starts on t cross One is ejected. The others remain in stable eccentric orbits. Δa [rH]Δa [rH] Marzari & Weidenschilling (2002) t cross t cross [yr] Origin of eccentric planets: jumping jupiter Weidenschilling & Marzari (1996), Lin & Ida(1997),... Solar system: 2 giants stable RV

Zhou et al. (2007)

t cross 3/18 Origin of eccentric planets: jumping jupiter Weidenschilling & Marzari (1996), Lin & Ida(1997),... a 0 = 5, 7.25, 9.5AU M = M J a Nagasawa et al. (2008) N-body simulations: 100 runs with different initial angular locations The system is chaotic, but shows a well determined distribution modeling (Monte Carlo) e

N-body: Nagasawa et al. (2008) ~ an hour/run on a PC Modeling + Monte Carlo ~ 0.02sec/1000runs on a PC tidal cicularization M=M J, a 0 = 5.0, 7.25, 9.0 AU ( Comparison between N-body and Modeling -- Scattering of 3 giant planets -- Scattering of 3 giant planets ee a[AU] no tide

N-body: Nagasawa et al. (2008) ~ an hour/run on a PC Modeling + Monte Carlo ~ 0.02sec/1000runs on a PC tidal cicularization M=M J, a 0 = 5.0, 7.25, 9.0 AU (

3/18 Semi-analytical modeling Ida & Lin (in prep.) select an ejected planet (mass-weighted random chaos) select an inwardly scattered planet (random) excited e of scattered planets: ev K ~ (2GM dom /R dom ) 1/2 ( mean value – deterministic dispersion – random(Rayleigh) ) a of outer planet q = a(1- e) with appropriate q ( initial as; calibrated by N-body) (deterministic + random) a of inner planet by conservation of E (that of L : useless) (deterministic)

Modeling of dynamical interactions among rocky planetary embryos eccentricity e semimajor axis a [AU] oligarchic growth Kokubo & Ida (2002) Post-oligarchic giant impacts Kokubo et al. (2006) M ~ M isolation mass (deteministic) M ~1M MMSN case no ejection collisions after many scatterings

a [AU] t [yr] Monte Carlo : Ida & Lin (2010, ApJ) deterministic celestial dynamics + (reasonable) chaotic features < 0.1sec/run on a PC Modeling of giant impacts - stochastic process - t [yr] 3x x x10 7 6x10 7 N-body : Kokubo et al. (2006) ~ a few days/run on a PC

eccentricity M [M ] MMSN 10xMMSN 0.1xMMSN final largest bodies20 runs each Monte Carlo N-body Kokubo et al. (2006) semimajor axis [AU] Modeling of giant impacts of rocky planets - stochastic process - Ida & Lin (2010, ApJ)

Modeling reveal intrinsic physics meta-stable t cross ~ t system stable t cros s >>t system e ~ ev K ~ 0.3 e < 0.1

Implication: formation of multiple, non-resonant, close-in super-Earths Ida & Lin (2010, ApJ) Recent radial velocity surveys Large fraction (10-40%; why so common?) of solar-type stars have super-Earths (why didnt accrete gas?) at ~0.1AU (why > a hot jup ?) without signs of gas giants in the same systems Most of the super-Earth systems are non-resonant, multiple systems (why?)

e a [AU] t [yr] Formation of non-resonant, multiple, close-in super-Earths Ida & Lin (2010, ApJ) type-I migration (conventional) giant impacts resonant trapping disk gas M [M ] disk edge too small to start gas accretion non-res. multiple super-Earths (~0.1AU, missed gas accretion) high abundance

Ubiquity of short-P rocky planets M [M ] a [AU] 10.1 M [M ] 10 slow type I mig moderate type I mig

Solar system vs. Super-Earth systems corotation radius channel flow strong magnetic coupling Inner Cavity weak magnetic coupling No Cavity spin period [day] number of stars Herbst & Mundt (2005) Observation of spin periods of young stars Spitzer: positive Corot: negative

Diversity of short-P rocky planets M [M ] a [AU] a [AU] M [M ] no cavitycavity Solar system Saturnian satellite system? Short-P super-Earths Jovian satellite system? 10 Sasaki, Steawrt & Ida (2010, ApJ) slow type I mig moderate type I mig

Different a between hot super-Earths and jupiters Super-Eaths systems Ogihara, Duncan & Ida (2101, ApJ) type I migration of resonantly trapped embryos type II migration of gas giants a HSE > a HJ