Small-Area Fingerprint Verification

Slides:



Advertisements
Similar presentations
Distinctive Image Features from Scale-Invariant Keypoints David Lowe.
Advertisements

3D Model Matching with Viewpoint-Invariant Patches(VIP) Reporter :鄒嘉恆 Date : 10/06/2009.
Presented by Xinyu Chang
Evaluating Color Descriptors for Object and Scene Recognition Koen E.A. van de Sande, Student Member, IEEE, Theo Gevers, Member, IEEE, and Cees G.M. Snoek,
電腦視覺 Computer and Robot Vision I
Face Recognition and Biometric Systems 2005/2006 Filters.
66: Priyanka J. Sawant 67: Ayesha A. Upadhyay 75: Sumeet Sukthankar.
Matching with Invariant Features
A presentation by Modupe Omueti For CMPT 820:Multimedia Systems
Content Based Image Retrieval
Object Recognition with Invariant Features n Definition: Identify objects or scenes and determine their pose and model parameters n Applications l Industrial.
Patch Descriptors CSE P 576 Larry Zitnick
Lecture 6: Feature matching CS4670: Computer Vision Noah Snavely.
1 Interest Operators Find “interesting” pieces of the image –e.g. corners, salient regions –Focus attention of algorithms –Speed up computation Many possible.
A Study of Approaches for Object Recognition
Processing Digital Images. Filtering Analysis –Recognition Transmission.
Lecture 4: Feature matching
Good quality Fingerprint Image Minutiae Feature Extraction
Scale Invariant Feature Transform
Pores and Ridges: High- Resolution Fingerprint Matching Using Level 3 Features Anil K. Jain Yi Chen Meltem Demirkus.
Stepan Obdrzalek Jirı Matas
Scale Invariant Feature Transform (SIFT)
Image Features: Descriptors and matching
Lecture 6: Feature matching and alignment CS4670: Computer Vision Noah Snavely.
1 Interest Operators Find “interesting” pieces of the image Multiple possible uses –image matching stereo pairs tracking in videos creating panoramas –object.
Digital Image Processing & Pattern Analysis (CSCE 563) Course Outline & Introduction Prof. Amr Goneid Department of Computer Science & Engineering The.
Overview Introduction to local features
Digital Image Processing - (monsoon 2003) FINAL PROJECT REPORT Project Members Sanyam Sharma Sunil Mohan Ranta Group No FINGERPRINT.
Introduction --Classification Shape ContourRegion Structural Syntactic Graph Tree Model-driven Data-driven Perimeter Compactness Eccentricity.
Distinctive Image Features from Scale-Invariant Keypoints By David G. Lowe, University of British Columbia Presented by: Tim Havinga, Joël van Neerbos.
Computer vision.
8D040 Basis beeldverwerking Feature Extraction Anna Vilanova i Bartrolí Biomedical Image Analysis Group bmia.bmt.tue.nl.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
Recognition and Matching based on local invariant features Cordelia Schmid INRIA, Grenoble David Lowe Univ. of British Columbia.
Overview Harris interest points Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Evaluation and comparison of different.
8D040 Basis beeldverwerking Feature Extraction Anna Vilanova i Bartrolí Biomedical Image Analysis Group bmia.bmt.tue.nl.
Fingerprint Analysis (part 2) Pavel Mrázek. Local ridge frequency.
Topic 10 - Image Analysis DIGITAL IMAGE PROCESSING Course 3624 Department of Physics and Astronomy Professor Bob Warwick.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Digital Image Processing & Analysis Fall Outline Sampling and Quantization Image Transforms Discrete Cosine Transforms Image Operations Image Restoration.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Representation & Description.
Digital Image Processing - (monsoon 2003) FINAL PROJECT REPORT Project Members Sanyam Sharma Sunil Mohan Ranta Group No FINGERPRINT.
Lecture 7: Features Part 2 CS4670/5670: Computer Vision Noah Snavely.
COMP322/S2000/L171 Robot Vision System Major Phases in Robot Vision Systems: A. Data (image) acquisition –Illumination, i.e. lighting consideration –Lenses,
Harris Corner Detector & Scale Invariant Feature Transform (SIFT)
Vision and SLAM Ingeniería de Sistemas Integrados Departamento de Tecnología Electrónica Universidad de Málaga (Spain) Acción Integrada –’Visual-based.
Last update Heejune Ahn, SeoulTech
Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison.
Features, Feature descriptors, Matching Jana Kosecka George Mason University.
1 Machine Vision. 2 VISION the most powerful sense.
SIGNATURE RECOGNITION SYSTEM Group Number:10 Group Members: Richa Goyal(y08uc103) Rashmi Singhal(y08uc102)
1 Overview representing region in 2 ways in terms of its external characteristics (its boundary)  focus on shape characteristics in terms of its internal.
Image features and properties. Image content representation The simplest representation of an image pattern is to list image pixels, one after the other.
CSE 185 Introduction to Computer Vision Local Invariant Features.
1 Shape Descriptors for Maximally Stable Extremal Regions Per-Erik Forss´en and David G. Lowe Department of Computer Science University of British Columbia.
Face recognition using Histograms of Oriented Gradients
Another Example: Circle Detection
Image Representation and Description – Representation Schemes
Digital Image Processing - (monsoon 2003) FINAL PROJECT REPORT
Distinctive Image Features from Scale-Invariant Keypoints
FINGER PRINT RECOGNITION USING MINUTIAE EXTRACTION FOR BANK LOCKER SECURITY Presented by J.VENKATA SUMAN ECE DEPARTMENT GMRIT, RAJAM.
Local features: main components
Maximally Stable Extremal Regions
Maximally Stable Extremal Regions
CSE 455 – Guest Lectures 3 lectures Contact Interest points 1
Maximally Stable Extremal Regions
Visualization of computational image feature descriptors.
ECE734 Project-Scale Invariant Feature Transform Algorithm
Lecture 5: Feature invariance
Recognition and Matching based on local invariant features
Presentation transcript:

Small-Area Fingerprint Verification 曾子家 r05945052@ntu.edu.tw

http://www.ijser.org/paper/Fingerprint-Minutiae-Extraction-and-Orientation-Detection.html

True match

False match

Outline 7 Moments MSER: Section 1. Minutiae matching Normalization Enhancement Binarization Thinning Minutiae extraction Minutiae descriptor Matching Section 2. Local features matching 7 Moments MSER: Maximally Stable Extremal Regions

Minutiae matching Normalization Enhancement Binarization Thinning Minutiae extraction Minutiae descriptor Matching Minutiae matching Fingerprint Verification System using Minutiae Extraction Technique (Kaur, 2008)

Normalization Histogram equalization add in fingerprint https://en.wikipedia.org/wiki/Histogram_equalization

Normalization Histogram equalization add in fingerprint http://pnrsolution.org/Datacenter/Vol4/Issue2/96.pdf

Enhancement

Binarization

Thinning Fingerprint Reference Point Detection Based on High Curvature Points

Minutiae matching http://biometrics.mainguet.org/types/fingerprint/fingerprint_algo.htm

Local features matching 7 Moments MSER: Maximally Stable Extremal Regions Local features matching

7 Moments

Introduce “Moments” Definition: Weighted average (moment) of the image pixels' intensities Usage: Describe objects after segmentation Raw moment: Centroid: Centroid mement: Digital Image Processing (3rd Edition) 3 by Rafael C. Gonzalez

Invariants Translation The nature of centroid moment Scale Rotation

http://limitless-thoughts. blogspot http://limitless-thoughts.blogspot.tw/2011/05/hus-seven-moments-invariant-matlab-code.html

http://limitless-thoughts. blogspot http://limitless-thoughts.blogspot.tw/2011/05/hus-seven-moments-invariant-matlab-code.html

http://limitless-thoughts. blogspot http://limitless-thoughts.blogspot.tw/2011/05/hus-seven-moments-invariant-matlab-code.html

Similar pattern, similar value?

Exp. Compare images someone_0_09 someone_0_10

8 Splits someone_0_09 someone_0_10

Same image -> maskSize, characteristics

maskSize = 3

maskSize = 10

maskSize = 20

maskSize = 30

maskSize = 40

maskSize = 50

Summary Insignificant results in every mask size.

MSER Maximally Stable Extremal Regions

Introduce “MSER” Affine transformation-invariant Scale-invariant

Normalization

Affine transforamtion Ellipses to circular Intensity normalization

Summary Shortcomings Can only detect few features Not robust to blur

References M. Dubey and S. Sahu, “Fingerprint Minutiae Extraction and Orientation Detection Using ROI (Region Of Interest) for Fingerprint Matching,” http://www.ijser.org/paper/Fingerprint-Minutiae-Extraction-and- Orientation-Detection.html, 2017. M. Kaur, et al., “Fingerprint Verification System using Minutiae Extraction Technique,” http://waset.org/publications/14355/fingerprint-verification- system-using-minutiae-extraction-technique, 2017. Wikipedia, “Histogram Equalization,” https://en.wikipedia.org/wiki/Histogram_equalization, 2017.

References N. H. Barnouti, “Fingerprint Recognition Improvement Using Histogram Equalization and Compression Methods”, http://pnrsolution.org/Datacenter/Vol4/Issue2/96.pdf, 2017. J. –F. Mainguet, “Fingerprint Algorithms: Algorithmes de Reconnaissance d‘Empreintes Digitales,” http://biometrics.mainguet.org/types/fingerprint/fingerprint_algo.htm, 2017. R. C. Gonzalez, Digital Image Processing, 3rd Edition, Pearson, London, England, 2007.

References Limitless Thoughts, “Hu's Seven Moments Invariant (Matlab Code for invmoments.m),” http://limitless-thoughts.blogspot.tw/2011/05/hus- seven-moments-invariant-matlab-code.html, 2017. Yung-Yu Chuang, “Digital Visual Effect,” http://www.csie.ntu.edu.tw/~cyy/courses/vfx/17spring/lectures/, 2017.