Volume 112, Issue 5, Pages (March 2017)

Slides:



Advertisements
Similar presentations
Volume 86, Issue 4, Pages (April 2004)
Advertisements

Volume 107, Issue 9, Pages (November 2014)
Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d  Ronald D. Gorham, Wilson Rodriguez, Dimitrios.
Dechang Li, Ming S. Liu, Baohua Ji  Biophysical Journal 
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Volume 109, Issue 6, Pages (September 2015)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Maik Goette, Martin C. Stumpe, Ralf Ficner, Helmut Grubmüller 
Molecular Dynamics Simulations of Arp2/3 Complex Activation
Volume 112, Issue 7, Pages (April 2017)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
Volume 92, Issue 11, Pages (June 2007)
Supriyo Bhattacharya, Nagarajan Vaidehi  Biophysical Journal 
Structural and Dynamic Properties of the Human Prion Protein
Volume 102, Issue 6, Pages (March 2012)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Rainer A. Böckmann, Helmut Grubmüller  Biophysical Journal 
Coarse-Grained Peptide Modeling Using a Systematic Multiscale Approach
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Binding of the Bacteriophage P22 N-Peptide to the boxB RNA Motif Studied by Molecular Dynamics Simulations  Ranjit P. Bahadur, Srinivasaraghavan Kannan,
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
A Molecular Dynamics Study of Ca2+-Calmodulin: Evidence of Interdomain Coupling and Structural Collapse on the Nanosecond Timescale  Craig M. Shepherd,
Volume 87, Issue 6, Pages (December 2004)
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Volume 96, Issue 7, Pages (April 2009)
Ligand Binding to the Voltage-Gated Kv1
Azobenzene Photoisomerization-Induced Destabilization of B-DNA
Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase
Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane  Michele.
Volume 85, Issue 4, Pages (October 2003)
Intrinsic Bending and Structural Rearrangement of Tubulin Dimer: Molecular Dynamics Simulations and Coarse-Grained Analysis  Yeshitila Gebremichael, Jhih-Wei.
Volume 108, Issue 10, Pages (May 2015)
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Zara A. Sands, Alessandro Grottesi, Mark S.P. Sansom 
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Volume 103, Issue 5, Pages (September 2012)
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Volume 107, Issue 9, Pages (November 2014)
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 98, Issue 12, Pages (June 2010)
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Logan S. Ahlstrom, Osamu Miyashita  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Volume 114, Issue 1, Pages (January 2018)
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Flow-Induced β-Hairpin Folding of the Glycoprotein Ibα β-Switch
Volume 102, Issue 8, Pages (April 2012)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
The Talin Dimer Structure Orientation Is Mechanically Regulated
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Mitsuhiro Sugawa, Kaoru A. Okada, Tomoko Masaike, Takayuki Nishizaka 
Mijo Simunovic, Gregory A. Voth  Biophysical Journal 
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Frank T.M. Nguyen, Michael D. Graham  Biophysical Journal 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 98, Issue 4, Pages (February 2010)
Torque Transmission Mechanism via DELSEED Loop of F1-ATPase
Role of the DELSEED Loop in Torque Transmission of F1-ATPase
Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor  Yoonji Lee, Songmi Kim, Sun Choi, Changbong Hyeon 
Volume 86, Issue 6, Pages (June 2004)
The NorM MATE Transporter from N
Presentation transcript:

Volume 112, Issue 5, Pages 911-920 (March 2017) Rotation Mechanism of Molecular Motor V1-ATPase Studied by Multiscale Molecular Dynamics Simulation  Yuta Isaka, Toru Ekimoto, Yuichi Kokabu, Ichiro Yamato, Takeshi Murata, Mitsunori Ikeguchi  Biophysical Journal  Volume 112, Issue 5, Pages 911-920 (March 2017) DOI: 10.1016/j.bpj.2017.01.029 Copyright © 2017 Biophysical Society Terms and Conditions

Figure 1 Structures of V-ATPase. A schematic view of the V-ATPase structure is shown in (A). In (B)–(D) three crystal structures of V1-ATPase (PDB ID: 3VR6, 5KNB, and 5KNC) (12,13) are drawn in a sliced view from the N-terminal domain. Biophysical Journal 2017 112, 911-920DOI: (10.1016/j.bpj.2017.01.029) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 2 Initial and final structures of the A3B3 subunits for CG-MD simulations. Three different subunit pairs are referred to as AIBI, AIIBII, and AIIIBIII, respectively. The structures of (A) and (B) correspond to the initial and final structures at the two minima in the multiple-Go potential, respectively. Biophysical Journal 2017 112, 911-920DOI: (10.1016/j.bpj.2017.01.029) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 3 RMSF of the A subunit in the empty pair calculated from AA-MD simulations at 300 K and CG-MD simulations at 150, 240, and 275 K. The inset panel represents the RMSF deviation between the AA- and CG-MD simulations, with ΔRMSFAA-CG plotted against TCG. Biophysical Journal 2017 112, 911-920DOI: (10.1016/j.bpj.2017.01.029) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 4 Rotation of the central stalk and structural rearrangements of the A3B3 subunits in V1-ATPase observed in a trajectory of a CG-MD simulation. The time evolution of the rotation angle of the stalk is shown in (A). The time evolution of the RMSD of the AIBI pair from the empty, bindable-like, and bound structures in the crystal structures are compared in (B). A snapshot at the 3536 × 103 step in the CG-MD simulation is compared with the bindable-like structure of the crystal structure (PDB ID: 5KNB) (green) in (D). A snapshot at the 3565 × 103 step showing the large space between subunit AIII (black) and BI (orange) is illustrated in (E). For comparison of the space, the corresponding initial structures of subunits AIII and BI are shown in gray. The time evolution of the distances between the AI subunit and the N- and C-termini helices of the central stalk are plotted in (C). The trajectories of the C-terminal region for the 3467 × 103– to 3520 × 103 steps and the 3520 × 103 to 3700 × 103 steps are drawn in (F) and (G), respectively. The trajectories correspond to the movement of the center of mass of the C-terminal regions: R475-L477 of subunit A, E384-S392 of subunit B, and the contacting regions of the helices in the central stalk (DN1: T20-L29, DN2: K30-Q39, and DC: K162-M173 of subunit D). Biophysical Journal 2017 112, 911-920DOI: (10.1016/j.bpj.2017.01.029) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 5 A model of the ATP hydrolysis processes during the 120° rotation. A 120° rotation occurred as the system progressed through each structure shown in (A)–(F). The corresponding steps for the (A)–(F) structures along the 120° rotation are represented in (G). Biophysical Journal 2017 112, 911-920DOI: (10.1016/j.bpj.2017.01.029) Copyright © 2017 Biophysical Society Terms and Conditions