Teknologi Elektrik (BBT 3623) Bab 2: Litar Arus Ulang Alik Satu Fasa

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

Teknologi Elektrik (BBT 3623) Bab 2: Litar Arus Ulang Alik Satu Fasa

Kandungan Nilai Arus ulang alik Litar arus ulang alik rintangan, aruhan dan kapasitan tulin Litar siri RLC Litar kuasa rintangan tulin Litar kuasa aruhan tulin Litar kuasa kapasitan tulin Kuasa dalam litar R-X Vektor Kuasa kompleks dalam litar arus ulang alik Faktor kuasa dalam litar RLC Pembaikan faktor kuasa

2.1 Introduction Electricity is produced by generators at power stations and then distributed by a vast network of transmission lines (called the National Grid system) to industry and for domestic use. It is easier and cheaper to generate alternating current (a.c.) than direct current (d.c.) and a.c. is more conveniently distributed than d.c. since its voltage can be readily altered using transformers. Whenever d.c. is needed in preference to a.c , devices called rectifiers are used for conversion

2.2 How Altenating Current Generated In positions (a), (e) and (i) the conductors, EMF=0  no flux is cut In position (c) maximum flux is cut ,EMF= maximum e.m.f. is induced.

2.2 How Altenating Current Generated In position (g), maximum flux is cut EMF= maximum e.m.f. is induced. (opposite direction) Fleming’s right hand rule

Fleming’s right-hand rule,

2.2 How Altenating Current Generated In positions (b), (d), (f) and (h) some flux is cut and hence some e.m.f. is induced

2.3 Nilai Arus Ulang Alik (saat). V(t)=Voltan seketika (v) Vm=Voltan maksimum (V) (saat).

2.3 Nilai Arus Ulang Alik ISTILAH – ISTILAH VOLTAN AU Vp(Voltan puncak) – merupakan voltan maksimum yang diambil dari rajah gelombang. Bagi gelombang AU voltan puncaknya adalah Vm . Vp-p(Voltan puncak ke puncak) – merupakan nilai yang diambil bermula dari maksimum +ve ke nilai maksimum –ve.

2.3 Nilai Arus Ulang Alik ISTILAH – ISTILAH VOLTAN AU Va(Voltan purata) – merupakan nilai purata bagi gelombang sinus di mana nilainya adalah merupakan nilai purata yang diambil bagi keluasan di bawah garis gelombang AU. Nilainya adalah merupakan 63.7% daripada nilai voltan maksimum.

2.3 Nilai Arus Ulang Alik ISTILAH – ISTILAH VOLTAN AU @ Vpmkd(Voltan punca min kuasa dua) – merupakan nilai yang terpenting di dalam litar elektrik. Kebanyakan meter menunjukkan bacaan di dalam nilai pmkd yang sama dengan 70.7% daripada nilai puncak voltan ulang-alik. @

2.3 Nilai Arus Ulang Alik

2.4 Gambar Rajah Gelombang Au Gelombang Sefasa

2.4 Gambar Rajah Gelombang Au Gelombang Tidak Sefasa D.g.e. teraruh dalam ketiga-tiga gelombang adalah sama (Vm) Tetapi ianya tidak sampai ke nilai maksimum atau nilai sifar secara serentak Gelombang yang melalui titik sifar (0o) diambil sebagai rujukan. perbezaan fasa

2.4 Gambar Rajah Gelombang Au Gelombang Tidak Sefasa Gelombang B sebagai rujukan bagi ketiga-tiganya. Gelombang A mendahului gelombang B dengan α. Gelombang C menyusuli gelombang B dengan β.

2.4 Gambar Rajah Gelombang Au Gelombang Tidak Sefasa

2.4 Gambar Rajah Gelombang Au Gelombang Tidak Sefasa

2.4 Gambar Rajah Gelombang Au Gambar Rajah Vektor / Fasa Gambar Rajah Gelombang Gambar Rajah Vektor / Fasa

2.5 Litar AU - Rintangan Tulin (R)

2.6 Litar AU - Aruhan Tulin (L) (Inductive reactance) f – frekuensi L – aruhan (Hendry) Arus mengekori voltan 90˚ @ (π/2 rad)

2.6 Litar AU - Aruhan Tulin (L)

2.6 Litar AU - Aruhan Tulin (L)

2.6 Litar AU – Kapasitan Tulin (C) (Capacitive reactance) f – frekuensi C – kemuatan (Farad) Arus mendulu voltan 90˚ @ (π/2 rad)

2.6 Litar AU – Kapasitan Tulin (C)

2.6 Litar AU – Kapasitan Tulin (C)

2.6 Litar AU – Kapasitan Tulin (C)

2.7 Litar A.U Siri R-L In any a.c. series circuit the current is common to each component and is thus taken as the reference phasor. Current I lags the applied voltage V by an angle between 0˚ and 90˚ (depending on the values of VR and VL)

2.7 Litar A.U Siri R-L

2.7 Litar A.U Siri R-L

2.7 Litar A.U Siri R-L

2.7 Litar A.U Siri R-L

2.7 Litar A.U Siri R-L

2.7 Litar A.U Siri R-L

2.8 Litar A.U Siri R-C

2.8 Litar A.U Siri R-C Impedance,

2.8 Litar A.U Siri R-C

2.8 Litar A.U Siri R-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C Impedance,

2.9 Litar A.U Siri R-L-C Impedance,

This effect called series resonance 2.9 Litar A.U Siri R-L-C Z=R This effect called series resonance

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C Series connected impedances For series-connected impedances the total circuit impedance can be represented as a single L–C–R circuit by combining all values of resistance together, all values of inductance together and all values of capacitance together remembering that for series connected capacitors

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C

2.9 Litar A.U Siri R-L-C The phasor diagram The phasor sum of V1 and V2 gives the supply voltage V of 100V at a phase angle of 53.13◦ leading. These values may be determined by drawing or by calculation — either by resolving into horizontal and vertical components or by the cosine and sine rules.

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.10 Power In A.C Circuits

2.11 R–L Parallel A.C. Circuit In parallel circuits, the voltage is common to each branch of the network . Thus taken as the reference phasor when drawing phasor diagrams.

2.11 R–L Parallel A.C. Circuit

2.11 R–L Parallel A.C. Circuit

2.11 R–L Parallel A.C. Circuit

2.11 R–L Parallel A.C. Circuit

2.11 R–L Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.12 R–C Parallel A.C. Circuit

2.13 L–C parallel circuit

2.13 L–C parallel circuit Theoretically there are three phasor diagrams possible — each depending on the relative values of IL and IC:

2.13 L–C parallel circuit (i) IL >IC (giving a supply current, I =IL −IC lagging V by 90◦)

2.13 L–C parallel circuit (ii) IC >IL (giving a supply current, I =IC −IL leading V by 90◦)

2.13 L–C parallel circuit (iii) IL =IC (giving a supply current, I =0). condition is not possible in practice due to circuit resistance inevitably being present

2.13 L–C parallel circuit

2.13 L–C parallel circuit

2.13 L–C parallel circuit

2.14 LR–C parallel a.c. circuit the phasor diagram for the LR branch

2.14 LR–C parallel a.c. circuit the phasor diagram for the C branch

2.14 LR–C parallel a.c. circuit the phasor diagram for the circuit

2.14 LR–C parallel a.c. circuit Phasor diagram for I depend on Ic & ILR. There are three possible conditions for this circuit

2.14 LR–C parallel a.c. circuit Condition (i) IC >ILR sin Ø1

2.14 LR–C parallel a.c. circuit Condition (ii) ILR sin Ø1 >IC

2.14 LR–C parallel a.c. circuit Condition (iii) IC=ILR sin Ø1 this is called parallel resonance

2.14 LR–C parallel a.c. circuit 2 Methof of defining supply current I i. Scaled phasor diagram. ii. Polar and complex number method

2.14 LR–C parallel a.c. circuit

2.14 LR–C parallel a.c. circuit

2.15 Power factor improvement For a particular power supplied, a high power factor reduces the current flowing in a supply system, which consequently lowers losses (i.e. I2R losses) cheaper running cost.

2.15 Power factor improvement Industrial loads such as a.c. motors are essentially inductive (R–L) and may have a low power factor. One method of improving (or correcting) the power factor of an inductive load is to connect a static capacitor C in parallel with the load

2.15 Power factor improvement The supply current is reduced from ILR to I, the phasor sum of ILR and IC, and the circuit power factor improves from cos Ø1 to cos Ø2

2.15 Power factor improvement

2.15 Power factor improvement

2.15 Power factor improvement

2.15 Power factor improvement

SEKIAN TERIMA KASIH