Volume 101, Issue 11, Pages (December 2011)

Slides:



Advertisements
Similar presentations
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Advertisements

Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Rheology of the Active Cell Cortex in Mitosis
3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells  Valeria Levi, QiaoQiao Ruan, Enrico Gratton 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Antonio Cruz, Luis Vázquez, Marisela Vélez, Jesús Pérez-Gil 
Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Heterogeneous Drying Stresses in Stratum Corneum
John P. Hale, C. Peter Winlove, Peter G. Petrov  Biophysical Journal 
Dynamics of Active Semiflexible Polymers
Substrate Viscosity Enhances Correlation in Epithelial Sheet Movement
Behavior of Giant Vesicles with Anchored DNA Molecules
Volume 113, Issue 12, Pages (December 2017)
Jordi Soriano, Sten Rüdiger, Pramod Pullarkat, Albrecht Ott 
Maxim E. Dokukin, Nataliia V. Guz, Igor Sokolov  Biophysical Journal 
Huiyan Wu, Guangyi Zhao, Hongfei Zu, James H.-C. Wang, Qing-Ming Wang 
Jason M. Warner, Ben O’Shaughnessy  Biophysical Journal 
Vortex-Induced Injectable Silk Fibroin Hydrogels
Apparent Subdiffusion Inherent to Single Particle Tracking
Pulsatile Lipid Vesicles under Osmotic Stress
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Worms under Pressure: Bulk Mechanical Properties of C
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Detection of Cochlear Amplification and Its Activation
Volume 114, Issue 5, Pages (March 2018)
Colocalization of Multiple DNA Loci: A Physical Mechanism
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine- Induced Neutrophil Spreading  Elena. B. Lomakina, Graham Marsh, Richard E.
Roman Volinsky, Riku Paananen, Paavo K.J. Kinnunen  Biophysical Journal 
Fluorescence Correlation Spectroscopy: Past, Present, Future
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Sarah L. Veatch, Sarah L. Keller  Biophysical Journal 
Volume 109, Issue 1, Pages (July 2015)
Volume 93, Issue 12, Pages (December 2007)
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Volume 99, Issue 8, Pages (October 2010)
The Mechanics of FtsZ Fibers
Volume 96, Issue 6, Pages (March 2009)
Volume 99, Issue 8, Pages (October 2010)
Interactions between Adsorbed Hydrogenated Soy Phosphatidylcholine (HSPC) Vesicles at Physiologically High Pressures and Salt Concentrations  Ronit Goldberg,
Dynamics of Active Semiflexible Polymers
Volume 112, Issue 2, Pages (January 2017)
Volume 105, Issue 10, Pages (November 2013)
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy  R.E. Mahaffy, S. Park, E. Gerde, J.
Volume 94, Issue 8, Pages (April 2008)
Mathias Sander, Heike Dobicki, Albrecht Ott  Biophysical Journal 
Volume 105, Issue 10, Pages (November 2013)
Volume 113, Issue 10, Pages (November 2017)
Volume 97, Issue 1, Pages (July 2009)
Bridging Microscopic and Mesoscopic Simulations of Lipid Bilayers
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid  Hiromichi Nakahara, Sannamu Lee,
The Role of Network Architecture in Collagen Mechanics
Volume 79, Issue 1, Pages (July 2000)
Montse Rovira-Bru, David H. Thompson, Igal Szleifer 
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Label-Free Imaging of Lipid-Droplet Intracellular Motion in Early Drosophila Embryos Using Femtosecond-Stimulated Raman Loss Microscopy  Wei Dou, Delong.
S.A. Shkulipa, W.K. den Otter, W.J. Briels  Biophysical Journal 
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Volume 110, Issue 12, Pages (June 2016)
George D. Dickinson, Ian Parker  Biophysical Journal 
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Presentation transcript:

Volume 101, Issue 11, Pages 2721-2730 (December 2011) Solid Character of Membrane Ceramides: A Surface Rheology Study of Their Mixtures with Sphingomyelin  Elisa R. Catapano, Laura R. Arriaga, Gabriel Espinosa, Francisco Monroy, Dominique Langevin, Iván López-Montero  Biophysical Journal  Volume 101, Issue 11, Pages 2721-2730 (December 2011) DOI: 10.1016/j.bpj.2011.10.049 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 (A) Surface pressure π-A isotherm of eggCer monolayer at compression rate of 5 cm2/min. (Inset) Elasticity modulus E of eggCer represented in function of the mean molecular area. (B) Elasticity modulus E of eggCer represented in function of the surface pressure. E is obtained from the experimental compression isotherm as the direct derivative of π(A), using Eq. 5. (Images a–h) BAM micrographs of eggCer monolayers (scale bar corresponds to 100 μm). Images represent monolayer states raised along a continuous compression isotherm at 20°C. (a) 0.3 mN/m, (b) 0.6 mN/m, (c) 2 mN/m, (d) 5 mN/m, and (e–h) image sequence showing the surface topography of eggCer monolayers at the collapse upon further compression. Brighter regions correspond to thicker surface ruffles emerging from the ceramide monolayer. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 π-Dependence of the elasticity modulus, E0, for lipid monolayers made of EggCer/EggSM mixtures: (solid line) 1:0 mol; (dashed line) 2:1 mol; (dash-dotted line) 1:1 mol; (dotted line) 1:2 mol; and (dash-dot-dot-dashed line) 0:1 mol; and that obtained from the π-A isotherms (Eq. 5). (Inset) % SM-dependence of the maximal elasticity modulus, E0max, measured at the biologically relevant lateral pressure πbil ≈ 30 mN/m. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Experimental stress-strain curves obtained for (□) eggCer; (▵) eggCer/egg/SM 1:1 mol; and (⋄) eggSM monolayers. (Solid lines) Asymptotic linear behavior σ0 = E0u0, well characterized by the linear compression modulus E0 reported in Fig. 2. (Inset) Fast Fourier transform stress functions of eggCer (black solid line) and eggSM (gray dashed line) measured at ∼4% strain amplitude. The spectrum for eggCer is characterized by the presence of a series of harmonics (kω0) of the fundamental mode ω0 (excitation frequency). By contrast, only the fundamental mode is found for eggSM monolayers. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 (A) Frequency dependence of the compression elasticity modulus E (solid symbols). Equilibrium value E0 obtained from the π-A isotherms (dashed lines) (Fig. 2). (B) Frequency dependence of the compression viscosity ηE (open symbols) as obtained from oscillatory barrier experiments for different eggCer/eggSM monolayers: (▪) 1:0 mol; (●) 2:1 mol; (▴) 1:1 mol; (▾) 1:2 mol; and (♦) 0:1 mol. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 (A) Experimental strain-stress plots under shear deformation measured at fixed frequency of 1 Hz for different eggCer/eggSM monolayers: (▪, solid line) 1:0 mol; (▴, dashed line) 1:1 mol; and (♦, dots) 0:1 mol. The yield stress σY defines a plastic plateau at γY. (Dashed line) Boundary of the linear regime from the nonlinear regime. (B) Strain dependence of the shear modulus G′ (solid symbols) and (C) the frictional shear losses G″ (open symbols) as obtained from oscillatory barrier experiments for the same eggCer/eggSM mixtures shown in panel A. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 (A) Frequency dependence of the shear modulus G′ and (B) the shear viscosity ηS obtained from oscillatory shear experiments at a fixed strain amplitude of 0.5% for different eggCer/eggSM monolayers: (■) 1:0 mol; (◂) 9:1 mol; (●) 2:1 mol; (▴) 1:1 mol; (▾) 1:2 mol; and (♦) 0:1 mol. (C) Shear modulus G′ (■) and the frictional shear losses G″(●) measured at a fixed frequency of 10 Hz and represented as a function of the SM content present in the same eggCer/eggSM mixtures shown in panels A and B. (D) Solid character (defined as a percentage of G′/G″ ratio) of the same eggCer/eggSM mixtures shown in panels A and B as a function of the % SM content. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 7 (A) Typical image showing several PMMA microparticles (at low surface covering) spread on a pure eggSM monolayer. (B) Mean-square displacements (MSDs) for PMMA particles of 5.75-μm diameter on different eggCer/eggSM monolayers: (□) 1:0 mol; (○) 2:1 mol; (▵) 1:2 mol; and (▿) 0:1 mol. (Inset) Diffusion coefficient obtained from the linear fit of MSDs as a function of the SM content present in the eggCer/eggSM mixtures. Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 8 Diffusion coefficient D relative to the diffusion coefficient of SM DSM as a function of surface shear viscosity ηS relative to the shear surface viscosity of SM ηSSM as obtained from the shear oscillatory experiments for different eggCer/eggSM mixtures. (Vertical dashed line) Two different viscoelastic behaviors characterized by G′ < G″ (left) and G′ > G″ (right). (Solid line) Stokes-Einstein dependence. (Dashed line) Saffmann-Delbrück prediction (see text for details). Biophysical Journal 2011 101, 2721-2730DOI: (10.1016/j.bpj.2011.10.049) Copyright © 2011 Biophysical Society Terms and Conditions