Eric Shou Stat/CSE 598B. What is Game Theory? Game theory is a branch of applied mathematics that is often used in the context of economics. Studies strategic.

Slides:



Advertisements
Similar presentations
Industrial Economics (Econ3400) Week 5 August 21, 2008 Room 323, Bldg 3 Semester 2, 2008 Instructor: Dr Shino Takayama.
Advertisements

Truthful Mechanisms for Combinatorial Auctions with Subadditive Bidders Speaker: Shahar Dobzinski Based on joint works with Noam Nisan & Michael Schapira.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Online Learning for Online Pricing Problems Maria Florina Balcan.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Nash Equilibrium: Illustrations
Yang Cai Oct 01, An overview of today’s class Myerson’s Auction Recap Challenge of Multi-Dimensional Settings Unit-Demand Pricing.
Online Mechanism Design (Randomized Rounding on the Fly)
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
CPSC 455/555 Combinatorial Auctions, Continued… Shaili Jain September 29, 2011.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
EC941 - Game Theory Prof. Francesco Squintani Lecture 4 1.
CPS Bayesian games and their use in auctions Vincent Conitzer
Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan.
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Intermediate Microeconomics Midterm (50%) (4/27) Final (50%) (6/22) Term grades based on relative ranking. Mon 1:30-2:00 ( 社科 757)
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
On Cheating in Sealed-Bid Auctions Ryan Porter Yoav Shoham Computer Science Department Stanford University.
A Prior-Free Revenue Maximizing Auction for Secondary Spectrum Access Ajay Gopinathan and Zongpeng Li IEEE INFOCOM 2011, Shanghai, China.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
Algorithmic Applications of Game Theory Lecture 8 1.
Mechanism Design and the VCG mechanism The concept of a “mechanism”. A general (abstract) solution for welfare maximization: the VCG mechanism. –This is.
Maria-Florina Balcan Approximation Algorithms and Online Mechanisms for Item Pricing Maria-Florina Balcan & Avrim Blum CMU, CSD.
Item Pricing for Revenue Maximization in Combinatorial Auctions Maria-Florina Balcan, Carnegie Mellon University Joint with Avrim Blum and Yishay Mansour.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Agent Technology for e-Commerce Chapter 10: Mechanism Design Maria Fasli
Machine Learning for Mechanism Design and Pricing Problems Avrim Blum Carnegie Mellon University Joint work with Maria-Florina Balcan, Jason Hartline,
Auction Design for Atypical Situations. Overview General review of common auctions General review of common auctions Auction design for agents with hard.
Competitive Auctions and Digital Goods Andrew Goldberg, Jason Hartline, and Andrew Wright presenting: Keren Horowitz, Ziv Yirmeyahu.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Truthfulness and Approximation Kevin Lacker. Combinatorial Auctions Goals – Economically efficient – Computationally efficient Problems – Vickrey auction.
Multiplicative Weights Algorithms CompSci Instructor: Ashwin Machanavajjhala 1Lecture 13 : Fall 12.
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Chapter 1 The Market 2 Economic Models Economic models are developed for a simplified representation of reality. An economic model eliminates irrelevant.
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
1 Competitive Auctions Authors: A. V. Goldberg, J. D. Hartline, A. Wright, A. R. Karlin and M. Saks Presented By: Arik Friedman and Itai Sharon.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Unlimited Supply Infinitely many identical items. Each bidder wants one item. –Corresponds to a situation were we have no marginal production cost. –Very.
Chapter 14 Equilibrium and Efficiency. What Makes a Market Competitive? Buyers and sellers have absolutely no effect on price Three characteristics: Absence.
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Maria-Florina Balcan Mechanism Design, Machine Learning and Pricing Problems Maria-Florina Balcan Joint work with Avrim Blum, Jason Hartline, and Yishay.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Ruihao Zhu and Kang G. Shin
An extension to Salop’s model Focused on variety differentiation: consumers differ on the most preferred variety Expands it to include quality differentiation:
Incomplete Information and Bayes-Nash Equilibrium.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Lecture 4 on Auctions Multiunit Auctions We begin this lecture by comparing auctions with monopolies. We then discuss different pricing schemes for selling.
Chapter 2: A Review of Markets and Rational Behavior “…while the law [of competition] may be sometimes hard for the individual, it is best for the race,
Comp/Math 553: Algorithmic Game Theory Lecture 10
False-name Bids “The effect of false-name bids in combinatorial
Bayesian games and their use in auctions
Comp/Math 553: Algorithmic Game Theory Lecture 09
Mechanism Design via Machine Learning
Competitive Auctions and Digital Goods
Auction Theory תכנון מכרזים ומכירות פומביות
CPS Bayesian games and their use in auctions
Presentation transcript:

Eric Shou Stat/CSE 598B

What is Game Theory? Game theory is a branch of applied mathematics that is often used in the context of economics. Studies strategic interactions between agents. Agents maximize their return, given the strategies the other agents choose (Wikipedia).

Example Player 2 LeftRight Player 1Up10,102,15 Down15, 25, 5 Dominant strategy for Player 1 is to choose down and the dominant strategy for Player 2 is to choose right. When Player 1 chooses down and Player 2 chooses right, they are in equilibrium because neither player will gain utility if he/she changes his/her position given the other players position.

What is Mechanism Design? In economics, mechanism design is the art of designing rules of a game to achieve a specific outcome. Each player has an incentive to behave as the designer intends. Game is said to implement the desired outcome. strength of such a result depends on the solution concept used in the game (Wikipedia).

Unlimited Supply Goods A seller is considered to have an unlimited supply of a good if the seller has at least as many identical items as the number of consumers, or the seller can reproduce items at a negligible marginal cost (Goldberg). Examples: digital audio files, pay-per-view television.

Pricing of Unlimited Supply Goods Use market analysis and then set a fixed price. Fixed pricing often does not lead to optimal fixed price revenue due to inaccuracies in market analysis.

Pricing of Unlimited Supply Goods Revenue

Pricing of Unlimited Goods Use auctions to take input bids from bidders to determine what price to sell at and which bidders to give a copy of the item to. Assume bidders in the auction each have a private utility value, the maximum value they are willing to pay for the good. Assume each bidder is rational; each bidder bids so as to maximize their own personal welfare, i.e., the difference between their utility value and the price they must pay for the good.

Digital Goods Auctions n bidders Each bidder has private utility of a good at hand Bidders submit bids in [0,1] Auctioneer determines who receives good and at what prices.

Truthful Auctions Most common solution concept for mechanism design is truthfulness. Mechanism designed so that truthfully reporting ones value is dominant strategy. Bid auctions are considered truthful if each bidders personal welfare is maximized when he/she bids his/her true utility value.

Truthful Mechanisms Mechanisms that are truthful simplifies analysis by removing need to worry about potential gaming users might apply to raise their utility. Thus, truthfulness as a solution concept is desired!

Setting of Truthful Auctions Collusion among multiple players is prohibited. Utility functions of bidders are constrained to simple classes. Mechanisms are executed once. These strong assumptions limit domains in which these mechanisms can be implemented. How do you get people to truthfully bid the price they are willing to pay without the assumptions?

Mechanism Design Differential Privacy Main idea of paper: Strong privacy guarantees, such as given by differential privacy, can inform and enrich the field of Mechanism Design. Differential privacy allows the relaxation of truthfulness where the incentive to misrepresent a value is non-zero, but tightly controlled.

What is Differential Privacy? A randomized function M gives ε-differential privacy if for all data sets D1 and D2 differing on a single user, and all S Range(M), Pr[M(D1) S] exp(ε) × Pr[M(D2) S] Previous approaches focus on real valued functions whose values are insensitive to the change in data of a single individual and whose usefulness is relatively unaffected by additive perturbations.

Game Theory Implications Differential Privacy implies many game theoretic properties: Approximate truthfulness Collusion Resistance Composability (Repeatability)

Approximate Truthfulness For any mechanism M giving ε-differential privacy and any non-negative function g of its range, for any D1 and D2 differing on a single input, E[g(M(D1))] exp(ε) × E[g(M(D2))] Example: In an auction with.001-differential privacy, one bidder can change the sell price of the item so that the sell price if the bidder was truthful was at most exp(.001)=1.001 times the sell price if the bidder was untruthful.

Collusion Resistance One fortunate property of differential privacy is that it degrades smoothly with the number of changes in the data set. For any mechanism M giving ε-differential privacy and any non-negative function g of its range, for any D1 and D2 differing on at most t inputs, E[g(M(D1))] exp(εt) × E[g(M(D2))]

Example If a mechanism has.001-differential privacy, and there were a group of 10 bidders trying to improve their utility by underbidding, the 10 bidders can change the sell price of the item so that the sell price if they were truthful was at most exp(10*.001)=1.01 times the sell price if the bidders were untruthful. If the auctioned item was a music file, which was supposed to be sold at $1 if the bidders were truthful, the most the 10 bidders can lower it to is $.99. $1 / $.99 = 1.01

Composability The sequential application of mechanisms{Mi}, each giving {ε i }-differential privacy, gives (Σ i ε i )-differential privacy. Example: If an auction with.001-differential privacy is rerun daily for a week, the seven prices of the week ahead can be skewed by at most exp(7*.001)=1.007 by a single bidder

General Differential Privacy Mechanism Goal: randomly map a set of n inputs from a domain D to some output in a range R. Mechanism is driven by an input query function q: D n * R -> that assigns any a score to any pair (d,r) from D n * R given that higher scores are more appealing. Goal of mechanism is to return an r є R given d є D such that q(d,r) is approximately maximized while guaranteeing differential privacy. Example: Revenue is q(d,r) = r * #{i: d i > r}.

General Differential Privacy Mechanism := Choose r with probability proportional to exp(εq(d,r)) * μ(r) probability measure Let (d) output r with probability α exp(εq(d,r)) A change to q(d,r) caused by a single participant has a small multiplicative influence on the density of any output, thus guaranteeing differential privacy. Example: p(r) α exp(ε r * #{i: d i > r})

General Differential Privacy Mechanism Let (d) output r with probability α exp(εq(d,r)) Higher scores are more probable because probability associated with a score increases as e εq(d,r) increases. e x is an increasing function. Thus in an auction with ε-differential privacy, the expected revenue is close to the optimal fixed price revenue (OPT).

General Differential Privacy Mechanism Two properties: Privacy Accuracy

Privacy (d) gives (2εΔq)-differential privacy. Δq is the largest possible difference in the query function when applied to two inputs that differ only on a single users value, for all r. Proof: Letting μ be a base measure, the density of at r is equal to: exp(q(d, r))μ(r) / exp(q(d, r))μ(r)dr Single change in d can change q by at most Δq, By a factor of at most exp(εΔq) in the numerator and at least exp(-εΔq) in the denominator. exp(εΔq) / exp(-εΔq) = exp(2εΔq) Example: Δq = 1

Accuracy Lemma: Let S t = {r : q(d, r) > OPT t}, Pr(S2t) < exp(t)/μ(St) Theorem (Accuracy): For those t ln(OPT/tμ(S t ))/ε, E[q(d, ε q є (d))] > OPT 3t Size of μ(S t ) as a function of t defines how large t must before exponential bias can overcome small size of μ(S t ). Good outcomes Bad outcomes Set value

OPT Graph of Price vs. Revenue μ(St) = width Pr(S2t) < exp(t)/μ(St) = small Source: Mcsherry, Talwar

Applications to Pricing and Auctions Unlimited supply auctions Attribute auctions Constrained pricing problems

Unlimited Supply Auctions Bidder has demand curve b i : [0,1] + describing how much of an item they want at a given price, p. Demand is non-increasing with price, and resources of a bidder are limited such that pb i 1 for all i, p. q(b,p) = pΣ i b i (p) dollars in revenue Mechanism gives 2ε-differential privacy, and has expected revenue at least: OPT – 3ln(e + ε 2 OPTm)/ ε, where m is the number of items sold in OPT. Cost of approximate truthfulness

Attribute Auctions Introduce public attributes to each of the bidders (e.g. age, gender, state of residence). Attributes can be used to segment the market. By offering different prices to different segments and leading to larger optimal revenue. SEG k = # of different segmentations into k markets OPT k = optimal revenue using k market segments Taking q to be the revenue function over segmentations into k markets and their prices, has expected revenue at least: OPT k – 3(ln(e + ε k+1 OPT k SEG k m k )/ε

Constrained Pricing Problem Limited set of offered prices that can go to bidders. Example: A movie theater must decide which movie to run. Solicit bids from patrons on different films. Theater only collects revenue from bids for one film.

Constrained Pricing Problem Bidders bid on k different items Demand curve b i j : [0,1] for each item j є [k] Demand non-increasing and bidders resources limited so that pb i j (p) 1 for each i, j, p. For each item j, at price p, revenue q(b, (j, p)) = pΣ i b i j (p) Expected revenue at least: OPT 3 ln(e + ε 2 OPTkm)/ε

Comments Tradeoff between approximate truthfulness and expected revenue. Attribute auctions – price discrimination? Application of mechanism to other games? Parallels with disclosure limitation?

Conclusions General different privacy mechanism,, is more robust than truthful mechanisms. Approximate truthfulness Collusion resistance Repeatability Properties Privacy Accuracy Applications Unlimited supply auctions Attribute auctions Constrained pricing

Questions?