Relativistic heavy ion collisions wan ahmad tajuddin wan abdullah jabatan fizik universiti malaya
Hot dense nuclear matter Quark-gluon plasma Hot dense nuclear matter
SPS @ CERN 17 GeV/ nucleon Pb LBL 1-2 GeV/ nucleon JINR 6 GeV/ nucleon AGS @ BNL RHIC @ BNL 200 GeV/ nucleon pair Cu, Au, U LHC @ CERN 2.76 TeV/ nucleon pair Pb
why condition in first microseconds in hot Big Bang QCD state at high temperatures Hadronization (~ confinement)
Typical temperature range – T = 300 MeV/k = 3.3 x 1012 K 10,000 x greater than in center of Sun Corresponding energy density – e =10 GeV/ fm3 Corresponding relativistic matter pressure – P ≈ e/3 = 0.52 x 1031 bar
Strangeness enhancement high temperature → strangeness enhanced Statistics: particle ratios → Tch , mB at chemical freezeout Experimental: 160 MeV < Tch < 180 MeV cf. expected QCD phase transition value ~170 MeV (lattice QCD calculations)
Heavy quarkonium suppression hot and deconfined medium – quarkonia (cf naked flavours) expected to “melt”
Jet quenching images courtesy CERN coloured particles damped in coloured media
Elliptic flow Collective anisotropy thermalization, hydrodynamics liquid-like
Colour glass condensate BFKL dynamics – saturation at Q2s ~ <Npart>/2 expect nch/A ~ 1/as(Q2s)