September 4, 1997 Parallel Processing (CS 667) Lecture 9: Advanced Point to Point Communication Jeremy R. Johnson *Parts of this lecture was derived from chapters 13 in Pacheco Parallel Processing
September 4, 1997 Introduction Objective: To further examine message passing communication patterns. Topics Implementing Allgather Ring Hypercube Non-blocking send/recv MPI_Isend MPI_Wait MPI_Test Parallel Processing
Broadcast/Reduce Ring P3 P2 P3 P2 P0 P1 P0 P1 P3 P2 P3 P2 P0 P1 P0 P1 Parallel Processing
Bi-directional Broadcast Ring P3 P2 P3 P2 P0 P1 P0 P1 P3 P2 P0 P1 Parallel Processing
Allgather Ring P3 P2 P3 P2 x3 x2 x2,x3 x1,x2 x0 x1 x0,x3 x0,x1 P0 P1 Parallel Processing
AllGather int MPI_AllGather( void* send_data /* in */ int send_count /* in */ MPI_Datatype send_type /* in */ void* recv_data /* out */ int recv_count /* in */ MPI_Datatype recv_type /* in */ MPI_Comm communicator /* in */) Process 0 x0 Process 1 x1 Process 2 x2 Process 3 x3 Parallel Processing
Allgather_ring void Allgather_ring(float x[], int blocksize, float y[], MPI_Comm comm) { int i, p, my_rank; int successor, predecessor; int send_offset, recv_offset; MPI_Status status; MPI_Comm_size(comm, &p); MPI_Comm_Rank(comm, &my_rank); for (i=0; i < blocksize; i++) y[i + my_rank*blocksize] = x[i]; successor = (my_rank + 1) % p; predecessor = (my_rank – 1 + p) % p; Parallel Processing
Allgather_ring for (i=0; i < p-1; i++) { send_offset = ((my_rank – i + p) % p)*blocksize; recv_offset = ((my_rank –i – 1+p) % p)*blocksize; MPI_Send(y + send_offset,blocksize,MPI_FLOAT, successor, 0, comm); MPI_Recv(y + rec_offset,blocksize,MPI_FLOAT,predecessor,0, comm,&status); } Parallel Processing
Hypercube Graph (recursively defined) n-dimensional cube has 2n nodes with each node connected to n vertices Binary labels of adjacent nodes differ in one bit 000 001 101 100 010 011 110 111 00 01 10 11 1 Parallel Processing
Broadcast/Reduce 000 001 101 100 010 011 110 111 Parallel Processing
Allgather 000 001 101 100 010 011 110 111 Parallel Processing
Allgather 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Parallel Processing
Allgather_cube void Allgather_cube(float x[], int blocksize, float y[], MPI_Comm comm) { int i, d, p, my_rank; unsigned eor_bit, and_bits; int stage, partner; MPI_Datatype hole_type; int send_offset, recv_offset; MPI_Status status; int log_base2(int p); MPI_Comm_size(comm, &p); MPI_Comm_Rank(comm, &my_rank); for (i=0; i < blocksize; i++) y[i + my_rank*blocksize] = x[i]; d = log_base2(p); eor_bit = 1 << (d-1); and_bits = (1 << d) – 1; Parallel Processing
Allgather_cube for (stage = 0; stage < d; stage++) { partner = my_rank ^ eor_bit; send_offset = (my_rank & and_bits) * blocksize; recv_offset = (partner & and_bits)*blocksize; MPI_Type_vector(1 << stage, blocksize, (1 << (d-stage)*blocksize, MPI_FLOAT,&hold_type); MPI_Type_commit(&hole_type); MPI_Send(y+send_offset,1,hole_type,partner, 0, comm); MPI_Recv(y+recv_offset,1,hole_type,partner, 0, comm,&status); MPI_Type_free(&hole_type); eor_bit = eor_bit >> 1; and_bits = and_bits >> 1; } Parallel Processing
Buffering Assumption Previous code is not safe since it depends on sufficient system buffers being available so that deadlock does not occur. SendRecv can be used to guarantee that deadlock does not occur. Parallel Processing
SendRecv int MPI_Sendrecv( void* send_buf /* in */, int send_count /* in */, MPI_Datatype send_type /* in */, int dest /* in */, int send_tag /* in */, void* recv_buf /* out */, int recv_count /* in */, MPI_Datatype recv_type /* in */, int source /* in */, int recv_tag /* in */, MPI_Comm communicator /* in */, MPI_Status* status /* out */) Parallel Processing
SendRecvReplace int MPI_Sendrecv_replace( void* buffer /* in */, int count /* in */, MPI_Datatype datatype /* in */, int dest /* in */, int send_tag /* in */, int source /* in */, int recv_tag /* in */, MPI_Comm communicator /* in */, MPI_Status* status /* out */) Parallel Processing
Nonblocking Send/Recv Allow overlap of communication and computation. Does not wait for buffer to be copied or receive to occur. The communication is posted and can be tested later for completion int MPI_Isend( /* Immediate */ void* buffer /* in */, int count /* in */, MPI_Datatype datatype /* in */, int dest /* in */, int tag /* in */, MPI_Comm comm /* in */, MPI_Request* request /* out */) Parallel Processing
Nonblocking Send/Recv int MPI_Irecv( void* buffer /* in */, int count /* in */, MPI_Datatype datatype /* in */, int source /* in */, int tag /* in */, MPI_Comm comm /* in */, MPI_Request* request /* out */) int MPI_Wait( MPI_Request* request /* in/out a*/, MPI_Status* status /* out */) int MPI_Test(MPI_Request* request, int * flat, MPI_Status* status); Parallel Processing
Allgather_ring (Overlapped) recv_offset = ((my_rank –1 + p) % p)*blocksize; for (i=0; i < p-1; i++) { MPI_ISend(y + send_offset,blocksize,MPI_FLOAT, successor, 0, comm, &send_request); MPI_IRecv(y + rec_offset,blocksize,MPI_FLOAT,predecessor,0, comm,&recv_request); send_offset = ((my_rank – i -1 + p) % p)*blocksize; recv_offset = ((my_rank – i – 2 +p) % p)*blocksize; MPI_Wait(&send_request, &status); MPI_Wait(&recv_request, &status); } Parallel Processing
AllGather int MPI_AllGather( void* send_data /* in */ int send_count /* in */ MPI_Datatype send_type /* in */ void* recv_data /* out */ int recv_count /* in */ MPI_Datatype recv_type /* in */ MPI_Comm communicator /* in */) Process 0 x0 Process 1 x1 Process 2 x2 Process 3 x3 Parallel Processing
Alltoall int MPI_Alltoall( void* send_buffer /* in */ int send_count /* in */ MPI_Datatype send_type /* in */ void* recv_buffer /* out */ int recv_count /* in */ MPI_Datatype recv_type /* in */ MPI_Comm communicator /* in */) Process 0 00 01 02 03 00 10 20 30 Process 1 10 11 12 13 01 11 21 31 Process 2 20 21 22 23 02 12 22 32 Process 3 30 31 32 33 03 13 23 33 Parallel Processing
AlltoAll Sequence of permutations implemented with send_recv 1 2 3 4 5 1 2 3 4 5 6 7 Parallel Processing
AlltoAll (2 way) Sequence of permutations implemented with send_recv 1 1 2 3 4 5 6 7 Parallel Processing
Communication Modes Synchronous (wait for receive) Ready (make sure receive has been posted) Buffered (user provides buffer space) Parallel Processing