FAUST{pms,std} (FAUST{pms} using # gap std

Slides:



Advertisements
Similar presentations
Exercise 19: Sample Size. Part One Explore how sample size affects the distribution of sample proportions This was achieved by first taking random samples.
Advertisements

Clustering.
Chapter 7 Introduction to Procedures. So far, all programs written in such way that all subtasks are integrated in one single large program. There is.
Introduction to Algorithms
MAXIMUM FLOW Max-Flow Min-Cut Theorem (Ford Fukerson’s Algorithm)
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu.
Jan Shapes of distributions… “Statistics” for one quantitative variable… Mean and median Percentiles Standard deviations Transforming data… Rescale:
The Standardized Normal Distribution Z is N( 0, 1 2 ) The standardized normal X is N( ,  2 ) 1.For comparison of several different normal distributions.
UNCERTAINTIES IN MEASUREMENTS PROPERLY PROCESSING DATA.
Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach Wenjie Zhang, Xuemin Lin The University of New South Wales & NICTA Ming Hua,
Chapter 9 – Classification and Regression Trees
Interpreting Performance Data
Image processing Fourth lecture Image Restoration Image Restoration: Image restoration methods are used to improve the appearance of an image.
1 p1 p2 p7 2 p3 p5 p8 3 p4 p6 p9 4 pa pf 9 pb a pc b pd pe c d e f a b c d e f X x1 x2 p1 1 1 p2 3 1 p3 2 2 p4 3 3 p5 6 2 p6.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 7.
Statistics 1: Introduction to Probability and Statistics Section 3-2.
Level-0 FAUST for Satlog(landsat) is from a small section (82 rows, 100 cols) of a Landsat image: 6435 rows, 2000 are Tst, 4435 are Trn. Each row is center.
Aggregate Function Computation and Iceberg Querying in Vertical Databases Yue (Jenny) Cui Advisor: Dr. William Perrizo Master Thesis Oral Defense Department.
Medical Statistics Medical Statistics Tao Yuchun Tao Yuchun 2
NOTES #9 CREATING DOT PLOTS & READING FREQUENCY TABLES.
5 Number Summary. Definition (Five-Number Summary) The five-number summary of a set of numbers consists of the five quantities – Minimum – 1st quartile.
CLUSTERING GRID-BASED METHODS Elsayed Hemayed Data Mining Course.
5(I,C) (I,C) (I,C) (I,C)
Near Neighbor Classifiers and FAUST Faust is really a Near Neighbor Classifier (NNC) in which, for each class, we construct a big box neighborhood (bbn)
Measures of Position – Quartiles and Percentiles
Data Mining: Concepts and Techniques
Merge Sort 7/29/ :21 PM The Greedy Method The Greedy Method.
Randomized Algorithms
Yue (Jenny) Cui and William Perrizo North Dakota State University
Dr. William Perrizo North Dakota State University
Stat 1301 Percentiles and the Normal Distribution
Searching CSCE 121 J. Michael Moore.
Standard Deviation Calculate the mean Given a Data Set 12, 8, 7, 14, 4
Bubble, Selection & Insertion sort
Statistics Review ChE 477 Winter 2018 Dr. Harding.
Make a deal for FAUST_p today!!!
Comparing Three or More Means
Merge Sort 11/28/2018 2:18 AM The Greedy Method The Greedy Method.
Randomized Algorithms
Merge Sort 11/28/2018 8:16 AM The Greedy Method The Greedy Method.
A simpler implementation and analysis of Chazelle’s
SpS[ XX, d2(x=(x1,x2), y=(x3,x4) ] = SpS[ XX, (x1-x3)2+(x2-x4)2 ] =
1.2 Describing Distributions with Numbers
Topic: Divide and Conquer
Measuring Variation – The Five-Number Summary
2006 Relative Luminosity Tai Sakuma MIT 3/19/2007.
FAUST Using std or rankK instead of just gap size to determine the best gap and/or using multiple attribute cutting can improve accuracy. We need a pTree.
FAUST_p (FAUST using pTrees)
Merge Sort 1/17/2019 3:11 AM The Greedy Method The Greedy Method.
Functional Analytic Unsupervised and Supervised data mining Technology
Constructing Box Plots
Chapter 3: Central Tendency
Query Functions.
Order Statistics Def: Let A be an ordered set containing n elements. The i-th order statistic is the i-th smallest element. Minimum: 1st order statistic.
Honors Statistics Review Chapters 4 - 5
Comparing Statistical Data
Algorithm of Aggregate Function SUM
Topic: Divide and Conquer
FAUST{pdq,std} (FAUST{pdq} using number of gap standard deviations)
pTree-k-means-classification-sequential (pkmc-s)
pTree-k-means-classification-sequential (pkmc-s)
Aggregate Functions.
Merge Sort 5/2/2019 7:53 PM The Greedy Method The Greedy Method.
FAUST{pms,std} (FAUST{pms} using # gap std
The Selection Problem.
PAj>c=Pj,m om...ok+1Pj,k oi is AND iff bi=1, k is rightmost bit position with bit-value "0", ops are right binding. c = bm ...
Algorithms CSCI 235, Spring 2019 Lecture 19 Order Statistics
se se se se se se se se se se ve ve ve ve ve ve ve ve ve ve vi vi vi
Number Summaries and Box Plots.
FAUST{pms,std} (FAUST{pms} using # gap std
Presentation transcript:

FAUST{pms,std} (FAUST{pms} using # gap std FAUST{pdq,mrk} (FAUST{pdq} w max rank_k) 0k1 rank_k(S) is smallest vS s.t. k fraction of S v. (except for k=0 then we use <v) RC=Remaining_Classes (initially all classes) with pTree, PRC (initially pure1). FAUST{pdq,gap} (FAUST{p} divisive, quiet (no noise) using gaps 0. attr, A TA(class, rv, gap) ordered on rv asc (rv is class rep val, gap=dist to next rv.  attr, A TA(class, md, k, cp) its attribute table ordered on md asc, where k s.t. it's max k value s.t. set_rank_k of class and set_rank_(1-k)' of the next class. (note: the rank_k for k=1/2 is median, k=1 is maximum and k=0 is the min. Same algorithm can clearly be used as a pms, that is; FAUST{pms,mrk} WHILE RC not empty, DO 1. Find the TA record with maximum gap: 2. Use PA>c (c=rv+gap/2) to divide RC at c into LT, GT (pTrees, PLT and PGT). 3. If LT or GT singleton {remove that class from RC and from all TA's END_DO FAUST{pdq,std} (FAUST{pdq} using # of gap standard devs) 0. For each attribute, A TA(class, mn, std, n, cp) is its attribute table ordered on n asc, where cp=val in gap allowing max # of stds, n. n satisfies: mean+n*std=meanG-n*stdG so n=(mnG-mn)/(std+stdG) WHILE RC not empty, DO 1. Find the TA record with maximum n: 2. Use PA>cp to divide RC at cp=cutpoint into LT and GT (pTree masks, PLT and PGT). 3. If LT or GT singleton {remove that class from RC and from all TA's} END_DO FAUST{pms,gap} (FAUST{p} m attr cut_pts, seq class separation (1 class at time, m=1 0. For each A, TA(class, rv, gap, avgap), where avgap is avg of gap and previous_gap (if 1st avgap = gap). If x classes. DO x-1 times 1. Find the TA record with maximum avgap: 2. cL=rv-prev_gap/2. cG=rv+gap/2, masks Pclass=PA>cL&PAcG&PRC PRC=P'class&PRC (If 1st in TA (no prev_gap), Pclass=PAcG&PRC. Last, Pclass=PA>cL&PRC. 3. Remove that class from RC and from all TA's END_DO FAUST{pms,std} (FAUST{pms} using # gap std In FAUST_pdq the mrk alg should be at least as good as gap and std but should also be better in the following situation: 0. attr, A TA(class, mn, std, n, avgn, cp) ordered avgn asc mrk should beat gap (and std?) taking midpt of a neg gap will be wrong because difference in distrs (e.g., in 1 class normal other power). cp=cut_point (value in gap which allows max # of stds, n, (n satisfies: mn+n*std=mnnext-n*stdnext so n=(mnnext-mn)/(std+stdt) DO x-1 times 1. Find the TA record with maximum avgn: In FAUST_pdq If there is a gap, mrk will always find it. If there isn't and distributions are different, it should perform much better than the other two. 2. cL=rv-prev_gap/2. cG=rv+gap/2 and pTree masks Pclass=PA>cL& PAcG&PRC PRC =P'class&PRC (If class 1st in TA (has no prev_gap), then Pclass =PAcG&PRC. If last, Pclass =PA>cL&PRC.) 3. Remove that class from RC and from all TA's END_DO rank_.9 gap or std

1. For every attr and every class, sort the values asc. 44 46 47 49 50 54 20 23 24 27 28 29 31 32 33 13 14 15 17 1 2 3 4 FAUST{pdq,mrk} algorithm, demonstrated with VPHD, Vertical Processing, Horizontal Data first : 1. For every attr and every class, sort the values asc. 2. Find and order the medians asc in TA tables. 3. Find max k s.t. rank_k_setrank_(1-k)_set =. rank_.7 rank_.7 rank_.8 rank_.9 rank_1 rank_1 rank_1 4. Proceed as in all FAUST algorithms - cut accordingly (pdq or pms or ???). With VPHD, sort each class in each attr, find medians (needed?), find rank_k_sets (combine this with sorting?) ... so O(n). With HPVD, we can avoid the sorting, find rank_k_sets (median is rank_.5), fill TAs entirely with a pTree program O(0). 49 50 52 55 57 63 64 65 66 69 rank_0 25 27 29 30 32 36 33 35 39 40 45 46 47 49 rank_0 10 13 14 15 16 rank_0 rank_.1 rank_.2 rank_.3 rank_.3 rank_.7 rank_.8 rank_.9 rank_.9 49 58 63 65 67 71 72 73 76 29 30 31 32 34 36 37 39 45 51 56 58 59 61 63 66 17 18 19 20 21 22 25 rank_.1 rank_.1 rank_.2 rank_.3 HPVD_mrk could be made optimal since we could record exactly which k and cp gives min error (as we work toward empty rank_k_set intersection) and we could know the error set. We could use CkNN or ? on each errant sample. To see this, go through the first k/cp animation. In that looping procedure it's clear we could determine se<55 with 3 errors to be the best cp (se<54, 6 errors; se<52, 5; se<50, 5; se<49, 6 ). Note: mrk above is lazy. It takes cp to be the average of the rank values - in this case cp=53 which has 6 errors. TsLN cl md k cp se 49 .7 53 ve 60 .7 64 vi 66 TsWD cl md k cp ve 28 .7 29 vi 29 .8 30 se 33 TpLN cl md k cp se 15 1.0 25 ve 45 .9 49 vi 58 TpWD cl md k cp se 2 1.0 7 ve 13 .9 16 vi 20 .7 53 .7 29 1.0 25 1.0 7 .7 64 .8 30 .9 49 .9 16 One can see from this animation that MaxGap is probably a pretty good method most of the time (provided there is at least one good gap each step) and the MaxGapStd is even better (same proviso). This method is intended to be optimal and to deal with, e.g., non-normal distributions.

maximum c=0; max=0;Pc=pure1; For i=4..0 { c=rc(Pc&Patt,i) if (c>0) se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pc = Ppw1 1 1 Ppw3 1 Ppw0 1 Ppw2 1 Ppw4 1 & Pc rc=10 max = 24 + 23 + 20 rc=1 rc=0 rc=1 c=0; max=0;Pc=pure1; For i=4..0 { c=rc(Pc&Patt,i) if (c>0) Pc=Pc&Patt,i max=max+2i } return max; maximum

minimum c=0; min=0;Pc=pure1; For i=4..0 { c=rc(Pc&P'att,i) if (c>0) se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pc = P'pw1 1 1 P'pw3 1 P'pw0 1 P'pw4 1 P'pw2 1 & Pc rc>0 rc=0 min = 20 c=0; min=0;Pc=pure1; For i=4..0 { c=rc(Pc&P'att,i) if (c>0) Pc=Pc&P'att,i else min=min+2i } return min; minimum

rankK (Kth largest) c=0; rank5=0; pos= 5; Pc=pure1; se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pc = Ppw1 1 1 P'pw3 P'pw1 1 1 Ppw0 1 Ppw3 1 Ppw2 1 Ppw4 1 & Pc rc=10 rc=1 rc=1 rc=3 rc=4 1 P'pw4 1 P'pw2 1 P'pw0 c=0; rank5=0; pos= 5; Pc=pure1; For i=4..0 //current_i = 4 { c=rc(Pc&Patt,i); if (cpos) rankK = rankK + 2i; Pc=Pc&Patt,i ; else pos = pos - c; Pc=Pc&P'att,i ; } } return rankK; 4 3 rankK =0 + 24 +22 1 2 3 rankK (Kth largest)

Ppw4 P44 &P10 0/16 APPENDIX masks &P01 10/14 P10 P01 1 1 1 Ppw4 P44 1 &P10 0/16 se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 APPENDIX masks 1 &P01 10/14 1 P10 1 P01

P44 &P10 0/16 P43 &P1000 0/8 & P0100 6/8 &P0010 4/8 &P0001 1/6 masks 1 P44 1 &P10 0/16 1 P43 1 &P1000 0/8 se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & P0100 6/8 1 &P0010 4/8 1 &P0001 1/6 masks 1 &P01 10/14 1 P10 1 P01 1 P1000 1 P0100 1 P0010 1 P0001

maximum c=0; max=0;Pc=pure1; For i=4..0 { c=rc(Pc&Patt,i) if (c>0) se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 54 36 14 2 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 se 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 se 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 se 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 se 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 se 63 33 47 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 se 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 se 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 se 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 se 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 se 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 se 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 se 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 se 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 se 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 se 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 se 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 se 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 se 72 36 61 25 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 se 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pc = 1 Ppw4 max = 24 + 23 + 20 rc=1 rc=0 rc=1 1 & Pc rc=10 1 Ppw0 1 Ppw3 1 Ppw2 Ppw1 1 1 Ppw0 c=0; max=0;Pc=pure1; For i=4..0 { c=rc(Pc&Patt,i) if (c>0) Pc=Pc&Patt,i max=max+2i } return max; maximum