Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 

Slides:



Advertisements
Similar presentations
Lights, X-Rays, Oxygen! Cell
Advertisements

Metal-Organic Frameworks for Energy Applications
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 5, Pages (November 2016)
Picking the Right Material for the Right Application
Applications of Zeolites in Sustainable Chemistry
Volume 82, Issue 1, Pages (April 2014)
Volume 3, Issue 2, Pages (August 2017)
Volume 102, Issue 8, Pages (April 2012)
Volume 1, Issue 4, Pages (December 2017)
João Ramiro Robalo, Susanne Huhmann, Beate Koksch, Ana Vila Verde  Chem 
Volume 124, Issue 2, Pages (January 2006)
Volume 39, Issue 6, Pages (September 2010)
Volume 3, Issue 12, Pages (December 1995)
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 21, Issue 6, Pages (March 2006)
Volume 4, Issue 1, Pages (January 2018)
Volume 16, Issue 10, Pages (October 2008)
Volume 5, Issue 3, Pages (March 1997)
Volume 1, Issue 6, Pages (December 2016)
Volume 2, Issue 2, Pages (February 2017)
Volume 5, Issue 4, Pages e4 (October 2017)
Labile Peroxides in Secondary Organic Aerosol
Volume 5, Issue 1, Pages (January 2019)
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 16, Issue 10, Pages (October 2008)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 3, Issue 6, Pages (December 2017)
Volume 15, Issue 8, Pages (August 2007)
Volume 4, Issue 4, Pages (April 2018)
Bio-inspired Self-Healing Electrolytes for Li-S Batteries
Structural Insights into Ligand Recognition by a Sensing Domain of the Cooperative Glycine Riboswitch  Lili Huang, Alexander Serganov, Dinshaw J. Patel 
Volume 14, Issue 5, Pages (May 2006)
Vibronic Enhancement of Algae Light Harvesting
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM  Max Kessler, Hermann E. Gaub  Structure  Volume.
Volume 1, Issue 4, Pages (December 2017)
Volume 3, Issue 4, Pages (October 2017)
Metal-Organic Frameworks for Energy Applications
A Radical Mechanism for Frustrated Lewis Pair Reactivity
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Open-State Models of a Potassium Channel
Structural Basis of cis- and trans-Combretastatin Binding to Tubulin
Volume 4, Issue 5, Pages (May 2018)
Volume 114, Issue 1, Pages (January 2018)
Volume 1, Issue 1, Pages (July 2016)
The Selectivity of K+ Ion Channels: Testing the Hypotheses
Volume 4, Issue 5, Pages (May 2018)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Volume 4, Issue 1, Pages (January 2018)
Volume 12, Pages (February 2019)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Molecular Similarity Analysis Uncovers Heterogeneous Structure-Activity Relationships and Variable Activity Landscapes  Lisa Peltason, Jürgen Bajorath 
A New Horizon for Fischer-Tropsch Synthesis
Volume 4, Issue 6, Pages (June 2018)
Volume 3, Issue 1, Pages (July 2017)
Tianjun Sun, Peter L. Davies, Virginia K. Walker  Biophysical Journal 
Volume 3, Issue 12, Pages (December 1995)
Volume 3, Issue 1, Pages 8-10 (July 2017)
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Polynuclear Clusters: Bridging between Metal Ion and Metal Oxide
Brandon R. Barnett, Miguel I. Gonzalez, Jeffrey R. Long 
Volume 3, Issue 5, Pages (November 2017)
Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM  Max Kessler, Hermann E. Gaub  Structure  Volume.
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Porous Metal-Organic Frameworks: Promising Materials for Methane Storage  Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem  Volume 1, Issue 4, Pages 557-580 (October 2016) DOI: 10.1016/j.chempr.2016.09.009 Copyright © 2016 Elsevier Inc. Terms and Conditions

Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Crystal Structures and Salient Pore Metrics of the MOFs under Consideration X-ray crystal structure of HKUST-1 (A), UTSA-76 (B), NOTT-102 (C), and NU-111 (D). The gray, red, cyan, and blue spheres represent carbon, oxygen, copper, and nitrogen atoms, respectively. The bigger yellow, green, and blue spheres denote the pores within the frameworks. The hydrogen atoms are omitted for clarity. Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 Comparison of Total Gravimetric and Volumetric CH4 Uptake for MOF Materials at 270 and 298 K (A) Total gravimetric CH4 uptake (65 bar, g [CH4] g−1). (B) Total volumetric CH4 uptake (cm3 [STP] cm−3). The horizontal gray lines in (A) and (B) represents the new gravimetric and volumetric DOE targets, respectively. Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Schematic Diagram of the Determination of the Amount of Deliverable Methane Storage with MOF-177 as an Example Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Comparison of Working Capacities at 5–65 bar and Different Storage Temperatures Selected MOFs at 270 and 298 K (A–C) and 240, 270, and 298 K (D–F) with different ranges of pore volume: 0.5–0.9 cm3 g−1 (A and D), 0.9–1.3 cm3 g−1 (B and E), and 1.3–2.4 cm3 g−1 (C and F). Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 Working Capacity versus Pore Volume The working capacity (cm3 [STP] cm−3) of MOFs systematically increases with increased pore volume (Vp, cm3/g). Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Calculation of the Excess Methane Storage Capacity of a Specific MOF at 270 K and 65 bar (A) Saturated excess gravimetric methane adsorption capacity at 125 K (cm3 [STP] g−1) versus pore volume (cm3 g−1) of the MOFs investigated. (B) Pore occupancy versus pore volume (cm3 g−1). Pore occupancy is defined as the excess gravimetric methane uptake at 270 K and 65 bar divided by the saturated excess gravimetric methane uptake at 125 K. The solid lines show the linear fitting results. Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 7 Comparison of the Experimental Total Methane Uptake and Those Predicted by the Empirical Equation (A) Gravimetric methane uptake at 270 K and 65 bar. (B) Volumetric methane uptake at 270 K and 65 bar. The framework densities used here were obtained from crystal structures without guest and terminal molecules. Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 8 Comparison of the Predicted Volumetric Uptake at 270 and 298 K The plot of the total volumetric methane storage capacity (cm3 [STP] cm−3) at 65 bar and 270 K (red) or 298 K (black) versus the framework pore volume (Vp, cm3 g−1) according to the empirical equations. The blue arrow indicates that the calculated limitation of methane storage of MOF materials at 65 bar is significantly improved and the pore volume is higher when the storage temperature is reduced from 298 K to 270 K. Chem 2016 1, 557-580DOI: (10.1016/j.chempr.2016.09.009) Copyright © 2016 Elsevier Inc. Terms and Conditions