Gwerthoedd Arbennig Sin, Cos a Tan

Slides:



Advertisements
Similar presentations
Trig for M2 © Christine Crisp.
Advertisements

C2: Trigonometrical Equations Learning Objective: to be able to solve simple trigonometrical equations in a given range.
Our goal in todays lesson will be to build the parts of this unit circle. You will then want to get it memorized because you will use many facts from.
Engineering Fundamentals Session 6 (1.5 hours). Trigonometry Triangle: –Geometric figure with 3 straight sides and 3 angles. Sides Angles.
Canolrif Dosraniad Di-or I ddarganfod canolrif hapnewidyn gyda dosraniad di-dor, rydym yn defnyddio’r ffwythiant dosraniad cronnus F(x). Mae’r tebygolrwydd.
Evaluating Inverse Trigonometric Functions
Right Triangles Consider the following right triangle.
Chapter 11 Trigonometric Functions 11.1 Trigonometric Ratios and General Angles 11.2 Trigonometric Ratios of Any Angles 11.3 Graphs of Sine, Cosine and.
(1) Sin, Cos or Tan? x 7 35 o S H O C H A T A O Answer: Tan You know the adjacent and want the opposite.
Important Angles.
E O Jones ©2011. Nodau Edrychwch ar y canlyniadau dysgu. Cyflwyno Fectorau. Sut i dynnu diagram fector. Amcan Nodi gofynion yr uned. Cael rhai cysyniadau.
Trigonometry. 2 Unit 4:Mathematics Aims Introduce Pythagoras therom. Look at Trigonometry Objectives Investigate the pythagoras therom. Calculate trigonometric.
Trig Functions – Part Pythagorean Theorem & Basic Trig Functions Reciprocal Identities & Special Values Practice Problems.
Y dosraniad Poisson fel brasamcan i’r Binomial. Pan mae’r nifer y treialon mewn dosraniad Binomial yn fawr iawn, a’r tebygolrwydd i lwyddo yn fach iawn,
5.2 Trigonometric Ratios in Right Triangles. A triangle in which one angle is a right angle is called a right triangle. The side opposite the right angle.
Basic Trigonometry An Introduction.
Trigonometric identities Trigonometric formulae
Triangles.
How to find the missing angle of a triangle.
Right Triangle Trigonometry
C2 TRIGONOMETRY.
Pythagoras’ Theorem and Trigonometry
4.2 Trigonometric Function: The Unit circle
( 11.Trigonometry ) Trigonometry is derived from Greek words tri ( three) gonon (angles) and metron ( measure). Trigonometry means the measure.
PROGRAMME F8 TRIGONOMETRY.
Angles of Rotation.
Evaluating Trigonometric Functions
Y Dosraniad Poisson The Poisson Distribution
Geometreg Cyfesurynnau Cartesaidd
Gweithdy ar Sgiliau Astudio
Edrychwch tuag Ynysoedd y Gwynt!
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Ffwythiant Dosraniad Cronnus F(x)
Worksheet Key 12/2/ :28 PM 13.3: The Unit Circle.
Day 97 –Trigonometry of right triangle 2
Proving Small Angle Theorems
Warm – Up: 2/4 Convert from radians to degrees.
Trigonometric Function: The Unit circle
Ffwythiannau Cyfansawdd a Gwrthdro
Y10 Triangle Starters Pythagoras A | Pythagoras A Answers
Find sec 5π/4.
CA4 ABaCh - Gwers Un BBC Plant Mewn Angen.
Evaluation Titration Defnyddiwch y cyflwyniad PowerPoint rhyngweithiol hwn i werthu’r agweddau hyn ar Ditradu Cywirdeg mewn Titradau Dull Titradu Dethol.
Logarithmau 2 Logarithms /adolygumathemateg.
1. BETH YDYW? WHAT IS IT? Mae rhannu gwybodaeth yn hanfodol i ymarfer diogelu – mae rhannu gwybodaeth yn wael yn cael ei nodi yn aml fel problem.
Unit #6: Graphs and Inverses of Trig Functions
4.2 Trigonometric Function: The Unit circle
Mathau o Gyfresi Types of /adolygumathemateg.
Lesson 14.2 Special Triangles pp
Trigonometric Functions:
Chapter 8: The Unit Circle and the Functions of Trigonometry
Chapter 8: The Unit Circle and the Functions of Trigonometry
The Distance to the Horizon
Braslunio Cromlinau Curve /adolygumathemateg.
Logarithmau 3 Logarithms /adolygumathemateg.
Ymholiad Gwaith Maes TGAU
Trig. Ratios in a Coordinate System
trigonometry Radian measure
CA3 – Gwneud Dewisiadau ar gyfer CA4 (2)
Sally Holland yw Comisiynydd Plant Cymru
Calculating the Number of Moles in a Solution
A circle with center at (0, 0) and radius 1 is called a unit circle.
AREA OF PART OF A CIRCLE.
Fformiwlâu Adiad Trigonometreg
Fectorau /adolygumathemateg.
Cyfres Geometrig Geometric /adolygumathemateg.
Trawsffurfiadau Graffiau
TRIGONOMETRY.
Presentation transcript:

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan @mathemateg /adolygumathemateg

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Ongl 𝜋 4 neu 45°: sin 𝜋 4 = cyferbyn hypotenws = 1 2 cos 𝜋 4 = agos hypotenws = 1 2 tan 𝜋 4 = cyferbyn agos = 1 1 =1 An angle of 𝜋 4 or 45°: sin 𝜋 4 = opposite hypotenuse = 1 2 cos 𝜋 4 = adjacent hypotenuse = 1 2 tan 𝜋 4 = opposite adjacent = 1 1 =1 𝜋 4 2 1 𝜋 4 1

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Onglau 𝜋 3 (60°) a 𝜋 6 (30°): Angles of 𝜋 3 (60°) and 𝜋 6 (30°): 𝜋 3 2 𝜋 3 2 1 𝜋 6 2 𝜋 3 𝜋 6 1 Cychwyn efo triongl hafalochrog / Start with an equilateral triangle 𝜋 3 𝜋 3 2 2 Haneru’r triongl / Halve the triangle

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Ongl 𝜋 6 neu 30°: Ongl 𝜋 3 neu 60°: sin 𝜋 6 = cyferbyn hypotenws = 1 2 sin 𝜋 3 = cyferbyn hypotenws = 3 2 cos 𝜋 6 = agos hypotenws = 3 2 cos 𝜋 3 = agos hypotenws = 1 2 tan 𝜋 6 = cyferbyn agos = 1 3 tan 𝜋 3 = cyferbyn agos = 3 1 = 3 An angle of 𝜋 6 or 30°: An angle of 𝜋 3 or 60°: sin 𝜋 6 = opposite hypotenuse = 1 2 sin 𝜋 3 = opposite hypotenuse = 3 2 cos 𝜋 6 = adjacent hypotenuse = 3 2 cos 𝜋 3 = adjacent hypotenuse = 1 2 tan 𝜋 6 = opposite adjacent = 1 3 tan 𝜋 3 = opposite adjacent = 3 1 = 3 𝜋 3 2 1 𝜋 6 3 Theorem Pythagoras i ffeindio 3 Pythagoras’ Theorem to find 3

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Crynodeb / Summary: Gellir ffeindio lluosrifau gwahanol o 30° trwy ddefnyddio cymesuredd graffiau sin, cos a tan. Other multiples of 30° can be found by using the symmetries of the graphs of sin, cos and tan. Ongl / Angle Sin Cos Tan 1 𝜋 6 neu / or 30° 1 2 3 2 1 3 𝜋 4 neu / or 45° 1 2 𝜋 3 neu / or 60° 3 𝜋 2 neu / or 90° Heb ei ddiffinio / Not defined

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Os oes gennym ongl fach, ac os yw’r ongl yn cael ei fesur mewn radianau, yna gellir defnyddio’r brasamcanion canlynol. If we have a small angle, and if the angle is measured in radians, then we can use the following approximations. sin 𝜃 ≈𝜃 cos 𝜃 ≈1− 𝜃 2 2 tan 𝜃 ≈𝜃 Mae’r brasamcanion yn gywir i dri ffigur ystyrlon os yw –0.105 < 𝜃 < 0.105 (neu –6° < 𝜃 < 6°). The approximations are correct to three significant figures if –0.105 < 𝜃 < 0.105 (or –6° < 𝜃 < 6°).

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan 𝜃 𝑟 𝑂 𝐴 𝐵 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch i’r ongl fach 𝜃 ffurfio sector o gylch 𝑂𝐴𝐵. Arwynebedd y sector yw 1 2 𝑟 2 𝜃. Let the small angle 𝜃 form the sector 𝑂𝐴𝐵 of a circle. The area of the sector is 1 2 𝑟 2 𝜃.

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan 𝜃 𝑟 𝑂 𝐴 𝐵 𝐶 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Gadewch i ni ychwanegu’r cord 𝐴𝐵 ag ymestyn y radiws 𝑂𝐴 i gyrraedd y pwynt 𝐶 fel bod 𝑂𝐵 a 𝐵𝐶 yn berpendicwlar. Let us add the chord 𝐴𝐵 and extend the radius 𝑂𝐴 to reach the point 𝐶 so that 𝑂𝐵 and 𝐵𝐶 are perpendicular.

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan 𝜃 𝑟 𝑂 𝐴 𝐵 𝐶 Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Brascamcanion onglau bach / Small angle approximations Mae 𝑂𝐶𝐵 yn driongl ongl sgwâr efo sail 𝑟 ag uchder 𝑟 tan 𝜃 . Arwynebedd triongl 𝑂𝐶𝐵 yw 1 2 𝑟 2 tan 𝜃 . Arwynebedd y triongl isosgeles 𝑂𝐴𝐵 yw 1 2 𝑟 2 sin 𝜃 . 𝑂𝐶𝐵 is a right-angled triangle with base 𝑟 and height 𝑟 tan 𝜃 . The area of the triangle 𝑂𝐶𝐵 is 1 2 𝑟 2 tan 𝜃 . The area of the isosceles triangle 𝑂𝐴𝐵 is 1 2 𝑟 2 sin 𝜃 .

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Mae arwynebedd triongl 𝑂𝐴𝐵 < arwynebedd sector 𝑂𝐴𝐵 < arwynebedd triongl 𝑂𝐶𝐵 1 2 𝑟 2 sin 𝜃 < 1 2 𝑟 2 𝜃< 1 2 𝑟 2 tan 𝜃 Gallwn rannu efo 1 2 𝑟 2 gan ei fod o hyd yn bositif. sin 𝜃 <𝜃< tan 𝜃 Gan fod 𝜃 yn ongl fach bositif, mae sin 𝜃 yn bositif. Felly gallwn rannu’r anhafaledd efo sin 𝜃 . sin 𝜃 sin 𝜃 < 𝜃 sin 𝜃 < tan 𝜃 sin 𝜃 1< 𝜃 sin 𝜃 < sin 𝜃 cos 𝜃 × 1 sin 𝜃 1< 𝜃 sin 𝜃 < sec 𝜃

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Now area of triangle 𝑂𝐴𝐵 < area of sector 𝑂𝐴𝐵 < area of triangle 𝑂𝐶𝐵 1 2 𝑟 2 sin 𝜃 < 1 2 𝑟 2 𝜃< 1 2 𝑟 2 tan 𝜃 We can divide by 1 2 𝑟 2 as it is always positive. sin 𝜃 <𝜃< tan 𝜃 Because 𝜃 is a small positive angle, sin 𝜃 is positive. We can therefore divide the inequality by sin 𝜃 . sin 𝜃 sin 𝜃 < 𝜃 sin 𝜃 < tan 𝜃 sin 𝜃 1< 𝜃 sin 𝜃 < sin 𝜃 cos 𝜃 × 1 sin 𝜃 1< 𝜃 sin 𝜃 < sec 𝜃

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Fel mae 𝜃 yn agosau at 0, mae sec 𝜃 yn agosau at 1. Felly, wrth i 𝜃 agosau at 0, mae 𝜃 sin 𝜃 yn gorwedd rhwng 1 a rhif sy’n agosau at 1. Felly, wrth i 𝜃 agosau at 0, mae 𝜃 sin 𝜃 yn agosau at 1. Mae hyn yn golygu bod sin 𝜃 ≈𝜃 ar gyfer gwerthoedd bach o 𝜃. Mae’n bosib dangos bod tan 𝜃 ≈𝜃 trwy rannu’r anhafaleddau efo tan 𝜃 (yn lle sin 𝜃 ). Gallwn ddefnyddio’r unfathiant ongl ddwbl cos 𝜃 ≡1−2 sin 2 𝜃 2 i ddarganfod brasamcan ar gyfer cos 𝜃 . Os yw 𝜃 2 yn fach, mae cos 𝜃 ≈1−2 𝜃 2 2 cos 𝜃 ≈1− 𝜃 2 2 .

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan As 𝜃 approaches 0, sec 𝜃 approaches 1. Therefore, as 𝜃 approaches 0, 𝜃 sin 𝜃 lies between 1 and a number approaching 1. Therefore, as 𝜃 approaches 0, 𝜃 sin 𝜃 approaches 1. This means that sin 𝜃 ≈𝜃 for small values of 𝜃. It is possible to show that tan 𝜃 ≈𝜃 by dividing the inequality by tan 𝜃 (instead of sin 𝜃 ). We can use the double angle identity cos 𝜃 ≡1−2 sin 2 𝜃 2 to find an approximation for cos 𝜃 . If 𝜃 2 is small, then cos 𝜃 ≈1−2 𝜃 2 2 cos 𝜃 ≈1− 𝜃 2 2 .

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Ymarfer 1 (a) Os yw 𝜃 yn ongl fach, darganfyddwch frasamcan ar gyfer y mynegiad sin 3𝜃 1+ cos 2𝜃 . (b) Os yw 𝜃 yn ongl fach, dangoswch fod tan 𝜋 4 +𝜃 ≈ 1+𝜃 1−𝜃 . (c) Os yw 𝜃 yn ddigon bach fel y gallwch anwybyddu 𝜃 2 , dangoswch fod 4 sin 𝜋 4 −𝜃 ≈2 2 (1−𝜃). (ch) O wybod bod 1°≈0.017 radian, darganfyddwch werth ar gyfer tan (61°) heb ddefnyddio’r ffwythiant tan ar eich cyfrifiannell. (d) Darganfyddwch werth bach positif o 𝑥 sydd yn fras ddatrysiad i’r hafaliad cos 𝑥 −4 sin 𝑥 = 𝑥 2 .

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Exercise 1 (a) If 𝜃 is a small angle, find an approximation for the expression sin 3𝜃 1+ cos 2𝜃 . (b) If 𝜃 is a small angle, show that tan 𝜋 4 +𝜃 ≈ 1+𝜃 1−𝜃 . (c) If 𝜃 is small enough so that you can ignore 𝜃 2 , show that 4 sin 𝜋 4 −𝜃 ≈2 2 (1−𝜃). (d) Given that 1°≈0.017 radian, find a value for tan (61°) without using the 𝑡𝑎𝑛 function on your calculator. (e) Find a small positive value of 𝑥 which is an approximate solution of the equation cos 𝑥 −4 sin 𝑥 = 𝑥 2 .

Gwerthoedd Arbennig Sin, Cos a Tan Special Values of Sin, Cos and Tan Atebion: / Answers: (a) 3𝜃 2(1− 𝜃 2 ) (ch) [or (d)] 1.802 (d) [or (e)] 0.230 radian