Synaptic Connectivity and Neuronal Morphology

Slides:



Advertisements
Similar presentations
Evolution as the blind engineer: wiring minimization in the brain Dmitri “Mitya” Chklovskii Cold Spring Harbor Laboratory.
Advertisements

(In)stability of spines. Outline Introduction Spine size and synaptic efficacy synaptic plasticity is associated with changes in number and size of spines.
Figure 1. Competition for establishing neural connections
Figure 1. Transfection leads to a vast overexpression of PKMζ and the dominant negative form of PKMζ (DN) in comparison with control. Following transfection.
Volume 86, Issue 5, Pages (June 2015)
Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines  Michael C. Ashby, John T.R.
Drosophila Olfaction: The End of Stereotypy?
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Calcium Dynamics of Spines Depend on Their Dendritic Location
Volume 49, Issue 6, Pages (March 2006)
Volume 80, Issue 2, Pages (October 2013)
Volume 71, Issue 5, Pages (September 2011)
R. Douglas Fields, Dong Ho Woo, Peter J. Basser  Neuron 
Neuroanatomy and Global Neuroscience
Density of dendritic spines on L2/3 pyramidal neurons is greater in visual cortex of germline PirB−/− mice than in PirB+/+ mice at P30. Density of dendritic.
Dissonant Synapses Shall Be Punished
Electron Microscopy at Scale
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex
Antonio Jesús Hinojosa, Rubén Deogracias, Beatriz Rico  Cell Reports 
Volume 96, Issue 4, Pages e5 (November 2017)
Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines
Julien Courchet, Franck Polleux  Neuron 
Volume 24, Issue 3, Pages R109-R110 (February 2014)
Sensory Experience Restructures Thalamocortical Axons during Adulthood
Volume 44, Issue 2, Pages (October 2004)
Aligning a Synapse Neuron
neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space
Volume 89, Issue 5, Pages (March 2016)
Determining the Activation Time Course of Synaptic AMPA Receptors from Openings of Colocalized NMDA Receptors  Ingo C. Kleppe, Hugh P.C. Robinson  Biophysical.
Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses
Fabian N. Svara, Jörgen Kornfeld, Winfried Denk, Johann H. Bollmann 
Volume 67, Issue 6, Pages (September 2010)
Drosophila Olfaction: The End of Stereotypy?
Transient and Persistent Dendritic Spines in the Neocortex In Vivo
Modeling the Spatial Reach of the LFP
A General Principle of Neural Arbor Branch Density
Depolarization Redistributes Synaptic Membrane and Creates a Gradient of Vesicles on the Synaptic Body at a Ribbon Synapse  David Lenzi, John Crum, Mark.
Yi Zuo, Aerie Lin, Paul Chang, Wen-Biao Gan  Neuron 
A Universal Property of Axonal and Dendritic Arbors
Volume 74, Issue 2, Pages (April 2012)
Volume 60, Issue 4, Pages (November 2008)
Volume 98, Issue 3, Pages e8 (May 2018)
Spine Motility  Tobias Bonhoeffer, Rafael Yuste  Neuron 
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Cian O’Donnell, Terrence J. Sejnowski  Neuron 
Tiago Branco, Michael Häusser  Neuron 
Neural Circuit Components of the Drosophila OFF Motion Vision Pathway
Dendritic Spines and Distributed Circuits
A Universal Property of Axonal and Dendritic Arbors
Ingrid Bureau, Gordon M.G Shepherd, Karel Svoboda  Neuron 
Susana Gomis-Rüth, Corette J. Wierenga, Frank Bradke  Current Biology 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 97, Issue 6, Pages e3 (March 2018)
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Volume 35, Issue 3, Pages (August 2002)
Matthew S. Kayser, Mark J. Nolt, Matthew B. Dalva  Neuron 
From Functional Architecture to Functional Connectomics
Molecular Neuroscience in the 21st Century: A Personal Perspective
Graham W. Knott, Charles Quairiaux, Christel Genoud, Egbert Welker 
James H. Marshel, Takuma Mori, Kristina J. Nielsen, Edward M. Callaway 
Mapping the Matrix: The Ways of Neocortex
Volume 93, Issue 1, Pages (January 2017)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Volume 113, Issue 10, Pages (November 2017)
Volume 39, Issue 2, Pages (July 2003)
Multisensory Integration in the Mouse Striatum
Refinement of the Retinogeniculate Synapse by Bouton Clustering
Class-Specific Features of Neuronal Wiring
Presentation transcript:

Synaptic Connectivity and Neuronal Morphology Dmitri B. Chklovskii  Neuron  Volume 43, Issue 5, Pages 609-617 (September 2004) DOI: 10.1016/j.neuron.2004.08.012

Figure 1 Reconstruction of a Pyramidal Neuron from Rat Neocortex Axons are shown in blue, dendrites and cell body are shown in red. Spines are small protrusions on the dendrites shown in the inset. Image is courtesy of G. Shepherd, Jr. and K. Svoboda; inset is courtesy of A. Holtmaat and K. Svoboda. Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 2 Design I: Point-to-Point Axons Neuronal network containing N neurons (green spheres) with all-to-all connectivity implemented by point-to-point axons (design I). For the sake of illustration, only axons belonging to one neuron are shown (blue lines originating from the gray sphere). The rest of the axons fill up the space between the neurons and determine the volume of the network, R3. Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 3 Design II: Branching Axons Neuronal network wired up with branching axons (design II). Only the axonal arbor (blue lines), belonging to one neuron (gray sphere), is shown. The rest of the axons fill up the space between the neurons and determine the network volume. The volume of the branching axons network (design II) is smaller than that with the point-to-point axons (design I). Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 4 Design III: Branching Axons and Dendrites Neuronal network wired up with branching axons and dendrites (design III). Only the axon (blue) belonging to one neuron (gray sphere in the center) and the dendrite (red) belonging to another (gray sphere in the corner) are shown. The rest of the axons and dendrites fill up the space between the neurons and determine the network size. Axons and dendrites form three-dimensional meshes that make contact with each other in the neuropil. The total network volume (design III) is smaller than that of the axons-only network (design II). Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 5 Design IV: Branching Axons and Spiny Dendrites Dendritic spines (red mushroom-like object) can implement a synapse between a dendrite (red cylinder) and an axon (blue) that pass within the distance, s, of each other. Addition of spines increases the reach of the dendrites and reduces the network size (design IV) relative to the smooth dendrite network (design III). Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 6 Cross-Section of a Dendrite with Adjacent Axons Dendrites must be sufficiently long to ensure that every presynaptic axon can synapse with them. Because of volume exclusion among axons, the maximum number of available presynaptic axons, N, is given by the dendritic length, l, times the spine length, s, divided by the axon diameter, d, squared. Dendritic length estimated this way coincides with that in design IV, thus proving its optimality. The same argument relates minimum axonal length to dendritic diameter. Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)

Figure 7 Volume of Network with All-to-All Connectivity as a Function of the Number of Neurons, N Out of all wiring designs (solid lines), only branching axons and spiny dendrites (magenta line) give the correct volume (<1 mm3) for the mouse cortical column, N = 105 neurons. Dashed line gives the actual network volume provided neuron density is that of the mouse cortex. Differences in slope reflect differences in scaling exponents. Note that log-log scale underemphasizes the actual reduction in volume. This calculation assumes a fixed wire diameter, da = 0.3 μm for axons and dd = 0.9 μm for dendrites. Neuron 2004 43, 609-617DOI: (10.1016/j.neuron.2004.08.012)