Volume 78, Issue 3, Pages (May 2013)

Slides:



Advertisements
Similar presentations
Volume 49, Issue 4, Pages (February 2006)
Advertisements

Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
Efficient, Complete Deletion of Synaptic Proteins using CRISPR
Jason R. Chalifoux, Adam G. Carter  Neuron 
A Major Role for Intracortical Circuits in the Strength and Tuning of Odor-Evoked Excitation in Olfactory Cortex  Cindy Poo, Jeffry S. Isaacson  Neuron 
Functional Convergence at the Retinogeniculate Synapse
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses
Dense Inhibitory Connectivity in Neocortex
Pathway-Specific Trafficking of Native AMPARs by In Vivo Experience
Volume 56, Issue 6, Pages (December 2007)
Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Bidirectional Modification of Presynaptic Neuronal Excitability Accompanying Spike Timing-Dependent Synaptic Plasticity  Cheng-yu Li, Jiang-teng Lu, Chien-ping.
LTP Requires a Unique Postsynaptic SNARE Fusion Machinery
Volume 86, Issue 2, Pages (April 2015)
Volume 25, Issue 3, Pages (March 2000)
Volume 86, Issue 5, Pages (June 2015)
Volume 70, Issue 2, Pages (April 2011)
Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations  Zhenglin Gu, Georgia M.
Volume 11, Issue 12, Pages (June 2015)
Pair Recordings Reveal All-Silent Synaptic Connections and the Postsynaptic Expression of Long-Term Potentiation  Johanna M Montgomery, Paul Pavlidis,
Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses  Mitsuharu Midorikawa, Takeshi Sakaba  Neuron 
Volume 87, Issue 6, Pages (December 1996)
Efficacy of Thalamocortical and Intracortical Synaptic Connections
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Volume 68, Issue 5, Pages (December 2010)
Carleton P. Goold, Roger A. Nicoll  Neuron 
Csaba Földy, Robert C. Malenka, Thomas C. Südhof  Neuron 
Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin- Positive Interneurons in Mouse Cortex  Laura Sancho, Brenda L. Bloodgood 
From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex  Caleb C.A. Stokes, Jeffry S. Isaacson 
Volume 52, Issue 2, Pages (October 2006)
Volume 123, Issue 1, Pages (October 2005)
Volume 52, Issue 5, Pages (December 2006)
Volume 77, Issue 6, Pages (March 2013)
Tiago Branco, Michael Häusser  Neuron 
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Zhenglin Gu, Jerrel L. Yakel  Neuron 
Synaptic transmission and plasticity is disturbed in 2-week-old but not in adult SynDIG1 β-gal mutant mice. Synaptic transmission and plasticity is disturbed.
Synapse-Specific Adaptations to Inactivity in Hippocampal Circuits Achieve Homeostatic Gain Control while Dampening Network Reverberation  Jimok Kim,
Volume 97, Issue 2, Pages e3 (January 2018)
Volume 57, Issue 2, Pages (January 2008)
Volume 78, Issue 6, Pages (June 2013)
Stéphane H.R Oliet, Robert C Malenka, Roger A Nicoll  Neuron 
Huibert D Mansvelder, Daniel S McGehee  Neuron 
Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory  Felix Leroy, David H. Brann, Torcato Meira, Steven.
Volume 71, Issue 6, Pages (September 2011)
Volume 62, Issue 2, Pages (April 2009)
Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output  Botir T. Sagdullaev, Maureen A. McCall, Peter.
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Han Xu, Hyo-Young Jeong, Robin Tremblay, Bernardo Rudy  Neuron 
Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity
Differentiating Cerebellar Impact on Thalamic Nuclei
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Volume 74, Issue 2, Pages (April 2012)
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Volume 20, Issue 8, Pages (August 2017)
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Volume 61, Issue 1, Pages (January 2009)
Volume 58, Issue 5, Pages (June 2008)
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Volume 66, Issue 2, Pages (April 2010)
Volume 57, Issue 6, Pages (March 2008)
Volume 65, Issue 1, Pages (January 2010)
Volume 29, Issue 2, Pages (February 2001)
Volume 54, Issue 1, Pages (April 2007)
Volume 7, Issue 5, Pages (June 2014)
Presentation transcript:

Volume 78, Issue 3, Pages 433-439 (May 2013) The Cell-Autonomous Role of Excitatory Synaptic Transmission in the Regulation of Neuronal Structure and Function  Wei Lu, Eric A. Bushong, Tiffany P. Shih, Mark H. Ellisman, Roger A. Nicoll  Neuron  Volume 78, Issue 3, Pages 433-439 (May 2013) DOI: 10.1016/j.neuron.2013.02.030 Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 Single-Cell Synaptic Silencing In Vivo Induced Enhanced Neuronal Excitability (A) Schematic of dual whole-cell voltage-clamp recording in acute hippocampal slices from GRIA1-3fl/flGRIN1fl/fl P20–P28 mice infected with virus expressing CreGFP at P0. (B) Scatter plots showed amplitudes of EPSCs for single pairs (open circles) and mean ± SEM (filled circles). Inset: representative superimposed traces (black, control [Cnt]; green, Cre). Scale bar represents 0.02 s, 50 pA. Graphs on the right show that synaptic transmission mediated by AMPARs or NMDARs is essentially eliminated in CreGFP-expressing neurons (each black line represents a single pair and the red line represents the average; AMPA EPSCs, Cnt: −194.2 ± 29.8 pA; Cre: −4.92 ± 1.39 pA; n = 10; NMDA EPSCS, Cnt: 71.5 ± 14.03 pA; Cre: 0.56 ± 0.08 pA; n = 10). *p < 0.001. (C) Sample action potential responses to step current injections (60, 80, 100, 120, 140, and 200 pA; 1,000 ms) in control neurons (black) or CreGFP-expressing neurons (green). Right: summary graph showing that deletion of both AMPARs and NMDARs increased the excitability of CA1 pyramidal neurons. *p < 0.001. Error bars represent SEM. (D) Bar graph shows that input resistance is significantly enhanced in neurons lacking both AMPARs and NMDARs. *p < 0.001. Error bars represent SEM. Neuron 2013 78, 433-439DOI: (10.1016/j.neuron.2013.02.030) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 Single-Cell Elimination of AMPARs and NMDARs Induced the Reduction of GABAergic Synaptic Strength (A) Scatter plots showed amplitudes of IPSCs for single pairs (open circles) and mean ± SEM (filled circles). Inset: representative superimposed traces (black, Cnt; green, Cre). Scale bar represents 0.05 s, 100 pA. Graph on the right shows that synaptic transmission mediated by GABAA receptors is significantly reduced in CreGFP-expressing neurons (each black line represents a single pair and the red line represents the average; Cnt: 309.00 ± 39.32 pA; Cre: 183.53 ± 32.13 pA; n = 17). *p < 0.001. (B) Cumulative distributions of mIPSC amplitudes and interevent intervals from control and CreGFP-expressing neurons. Above are sample traces from a control neuron (black) and a CreGFP-expressing neuron (green). Bar graphs show that both mIPSC amplitudes and interevent intervals are reduced in neurons expressing CreGFP. *p < 0.05. Error bars represent SEM. (C) Synaptic activation-evoked action potential firing is lost in CA1 pyramidal neurons expressing CreGFP. Synaptic activation-evoked action potentials were simultaneously recorded in one CreGFP-expressing neuron (green traces) and one neighboring control neuron (black traces) under cell-attached mode without breaking in. Synaptic activity was induced by stimulation of Schaffer Collateral pathway at either 0.1 Hz (step 1) or 50 Hz (step 2). After washing in APV (100 μM) and NBQX (10 μM), synaptic activation-evoked action potentials were blocked (step 3). Neurons were then held in whole-cell mode under voltage-clamp configuration to record evoked IPSCs (step 4), which were completely blocked by 20 μM bicuculline (step 5). Neuron 2013 78, 433-439DOI: (10.1016/j.neuron.2013.02.030) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 Morphological Conservation of CA1 Pyramidal Neurons Devoid of Synaptic Excitation In Vivo (A) Representative confocal stacks from Cnt and Cre cells. Bar graph on the right shows average number of dendritic branch points and dendritic length (Cnt: n = 10; Cre: n = 8; p > 0.05). Scale bar represents 20 μm. (B) Maximum intensity projections of representative dendrites from Cnt and Cre cells. Bar graph on the right shows average spine density (the number of spines per micron) for Cnt and Cre neurons (Cnt: n = 7 neurons; Cre: n = 6; p > 0.05). Scale bar represents 1 μm. (C) Electron micrographs consistently reveal PSDs in spines from Cre-expressing cell, similar to Cnt cells. Bar graphs show no significant difference in PSD length or thickness between Cnt and Cre spines (Cnt: n = 33 spines; Cre: n = 40 spines; p > 0.05). Scale bars represent 500 nm. (D) Presynaptic vesicle pools in boutons opposed to Cnt and Cre spines. Bar graph shows no significant difference in RRP vesicle numbers (Cnt: n = 15; Cre: n = 15; p > 0.05). Scale bars represent 100 nm. (E and F) Histograms showing spine lengths (E) and widths (F) for all spines measured in confocal volumes of control (black) and Cre-expressing (green) neurons. In the bar graphs on the right, comparing the two conditions revealed no significant difference in mean spine length (E, Cnt: 0.87 ± 0.01 μm, n = 880; Cre: 0.88 ± 0.01 μm, n = 1021; p = 0.23) and a small but statistically significant increase in spine width in Cre-expressing neurons (F, Cnt: 0.55 ± 0.004 μm, n = 861; Cre: 0.59 ± 0.004 μm, n = 998; p < 0.01). Error bars represent SEM. Neuron 2013 78, 433-439DOI: (10.1016/j.neuron.2013.02.030) Copyright © 2013 Elsevier Inc. Terms and Conditions