draft-lee-rtgwg-actn-applicability-enhanced-vpn-03

Slides:



Advertisements
Similar presentations
Problem Statement and Architecture for Information Exchange Between Interconnected Traffic Engineered Networks draft-farrel-interconnected-te-info-exchange-03.txt.
Advertisements

OSPF Traffic Engineering (TE) Express Path draft-giacalone-ospf-te-express-path-00.txt Spencer Giacalone, Alia Atlas, John Drake, Dave Ward.
Framework for Abstraction and Control of Transport Networks draft-ceccarelli-actn-framework-04 November 10, 2014 IETF 91 - Honolulu.
ACTN Proposed Protocol Work Dhruv Dhody 91 st Honolulu.
Abstraction and Control of Transport Networks (ACTN) BoF
Status of Work Feb 2, What and how fits? (option 1) Network Manager Network Elements (routers, switches, etc) RESTCONF / NETCONF Service Management.
ACTN Requirement. VNC (MDC) PNC 1 Access/MPLS- TP BH PNC 2 MPLS Core PNC 4 Access/MPLS TP BH PNC 3 Optical Core EP 1 EP 2 CNC EP 3.
ACTN Information Model Young Lee (Huawei) Sergio Belotti (Alcatel-Lucent) Daniele Ceccarelli (Ericsson) Dhruv Dhody (Huawei) Bin Young Yun (Etri) IETF.
Framework for Abstraction and Control of Transport Networks
Multi-layer Multi-domain Inter-op Test based on ACTN Architecture
Use Case for Distributed Data Center in SUPA
A Yang Data Model for ACTN VN Operation draft-lee-teas-actn-vn-yang-01
YANG Data Model for RIP draft-liu-rtgwg-yang-rip-01
draft-ietf-teas-yang-te-topo-05
Zhenbin Li, Kai Lu Huawei Technologies IETF 98, Chicago, USA
Connectionless OAM yang model
Yang model for requesting
draft-ietf-l3sm-l3vpn-service-model IETF 94 - Yokohama
TEAS WG, IETF 95th, Buenos Aires, Argentina
FlexE - Channel Control Work in the IETF
draft-ietf-teas-yang-te-topo-06
Routing Area Yang Architecture Design Team Update
IETF 97th CCAMP Working Group Online Agenda and Slides at:
draft-ietf-teas-yang-te-topo-01
YANG Data Models for TE and RSVP draft-ietf-teas-yang-rsvp-06 draft-ietf-teas-yang-te-05 Tarek Saad and Rakesh Gandhi.
FlexE - Channel Control Work in the IETF
ACTN Clarifications and proposed update
YANG Models for the Northbound Interface of a Transport Network Controller: Requirements and Gap Analysis CCAMP WG, IET97, Seoul draft-zhang-ccamp-transport-yang-gap-analysis-01.txt.
draft-ietf-teas-yang-te-04
draft-ietf-teas-yang-te-topo-04
ACTN Information Model
TE Topology and Tunnel Modeling for Transport Networks draft-bryskin-teas-te-topo-and-tunnel-modeling Igor Bryskin (Huawei Technologies) Xufeng Liu (Jabil)
Applicability of YANG models for ACTN
ACTN Information Model
Qin Wu Roni Even Ying Cheng IETF 103 Bangkok, Tailand Oct 12, 2018
YANG Data Models for TE and RSVP draft-ietf-teas-yang-rsvp-06 draft-ietf-teas-yang-te-05 Tarek Saad and Rakesh Gandhi.
Transport NBI Design Team Update
IETF 97 Hackathon ACTN Inter-Operation.
CCAMP IETF 103 Bangkok Giuseppe Fioccola, Huawei Kwang-Koog Lee, KT
Zhenbin Li, Shunwan Zhuang Huawei Technologies
Michale Wang Qin Wu Roni Even Wen Bin IETF 103 Bangkok, Tailand
Yang model for requesting
draft-ietf-rtgwg-ni-model-03 Impact on LxVPN device models
A Yang Data Model for ACTN VN Operation
Abstraction and Control of TE Networks (ACTN) Abstraction Methods
YANG data model for Flexi-Grid Optical Networks
YANG Data Models for TE and RSVP draft-ietf-teas-yang-te-08 draft-ietf-teas-yang-rsvp-07 draft-ietf-teas-yang-rsvp-te-01
DetNet Information Model Consideration
Yingzhen Qu YANG Data Model for OSPF Protocol draft-ietf-ospf-yang-08 draft-ietf-ospf-sr-yang-02 IETF99, Prague Derek Yeung
YANG data model for Flexi-Grid Optical Networks
YANG Data Models for TE and RSVP draft-ietf-teas-yang-te-06 draft-ietf-teas-yang-rsvp-07 draft-ietf-teas-yang-rsvp-te-00 draft-ietf-mpls-base-yang-04 code.
draft-ietf-teas-yang-te-topo-08
TEAS Working Group IETF 102
Y. Lee, D. Dhody, X. Zhang, A. Guo (Huawei)
CCAMP IETF 102 Giuseppe Fioccola, Telecom Italia Kwang-Koog Lee, KT
TEAS Working Group: IETF Montreal
TEAS Working Group IETF Prague
YANG Data Model for FlexE Interface Management
draft-ietf-teas-yang-l3-te-topo-04
Giuseppe Fioccola, Telecom Italia Kwang-Koog Lee, KT
draft-ietf-teas-yang-l3-te-topo-02
Applicability of YANG models for ACTN
YANG data model for Flexi-Grid Optical Networks
YANG Models for MPLS-TP
Spencer Giacalone, Alia Atlas, John Drake, Dave Ward
RIFT YANG draft-zhang-rift-yang-01
A YANG Data model for Event Management draft-wwx-netmod-event-yang-01
Draft-lee-teas-actn-vpn-poi-00 Applicability of ACTN to VPN with the Integration of Packet and Optical Networks Young Lee - Qin.
TAPI and RFC8345 Network Topology Analysis
Transport network requirements for TAPI considering NBI
Presentation transcript:

Applicability of Abstraction and Control of Traffic Engineered Networks (ACTN) to Enhanced VPN draft-lee-rtgwg-actn-applicability-enhanced-vpn-03 Daniel King (Lancaster University) Young Lee (Huawei) Jeff Tansura (Nuage) Qin Wu (Huawei) Daniele Ceccarelli (Ericsson) RTGWG @ IETF 102

Enhanced VPN has the following key requirements Isolation between VPNs Hard and soft isolation Guaranteed Performance Low latency, Low packet drop, Customized Control Plane Simple creation, deletion and modification of the services. Control over VPN Seamless integration of both physical and virtual network and service functions RTGWG @ IETF 102

IETF YANG Models (Ref: RFC 8309) Customer (CNC) L1/2/3 Service Model, VN Model, TE & Service Mapping Model Customer Service Model CMI Service Orchestrator (MDSC-H) Service Delivery Model MMI Network Orchestrator (MDSC-L) Network Orchestrator (MDSC-L) Network Configuration Model L0/L1/L2/L3 tunnel Model, L0/L1/L2/L3 topology Model MPI PNC PNC PNC PNC L0/L1/L2/L3 tunnel Model, L0/L1/L2/L3 topology Model Device Configuration Model SBI Network Element Network Element Network Element Network Element Network Element RTGWG @ IETF 102

IETF ACTN & YANG: Progress ACTN requirement ACTN framework ACTN info model RFC WG ID TEAS Topology Model Tunnel Model Service Model OAM Model I2RS L0 L1 L2 L3 L3 topo L3SM ACTN VN/VNS I2RS I2RS TEAS L2 topo TEAS L2SM TE Service mapping Network Topo TE Topo OTN topo OTN tunnel L1CSM CCAMP TE Tunnel CCAMP OAM/alarm model telemetry PM ? WSON topo Flex-grid topo WSON tunnel Flex-grid tunnel CCAMP CCAMP CCAMP CCAMP TEAS TEAS CCAMP TEAS

ACTN Reference Architecture Customer Network Controller CNC CNC CNC CMI Multi-domain Service Coordinator (Orchestrator) MDSC MPI Provisioning Network Controller (Domain Controller) PNC PNC PNC PNC PNC SBI RTGWG @ IETF 102

ACTN Architecture Principles: Virtual Network Providing network virtualization services to customer so that customers can dynamically control and operate their own virtual network slices according to their own service intent, application requirements. CNC (Customer Network Controller) can be Service Orchestrator, VNO Controller, Service Portal, etc. CNC Type 1 VN Type 2 VN MDSC Abstraction PNC PNC PNC PNC PNC

ietf-actn-vn yang module https://tools. ietf module: ietf-actn-vn +--rw actn +--rw ap | +--rw access-point-list* [access-point-id] | +--rw access-point-id uint32 | +--rw access-point-name? string | +--rw max-bandwidth? te-types:te-bandwidth | +--rw avl-bandwidth? te-types:te-bandwidth | +--rw vn-ap* [vn-ap-id] | +--rw vn-ap-id uint32 | +--rw vn? -> /actn/vn/vn-list/vn-id | +--rw abstract-node? -> /nw:networks/network/node/tet:te-node-id | +--rw ltp? te-types:te-tp-id +--rw vn +--rw vn-list* [vn-id] +--rw vn-id uint32 +--rw vn-name? string +--rw vn-topology-id? te-types:te-topology-id +--rw abstract-node? -> /nw:networks/network/node/tet:te-node-id +--rw vn-member-list* [vn-member-id] | +--rw vn-member-id uint32 | +--rw src | | +--rw src? -> /actn/ap/access-point-list/access-point-id | | +--rw src-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id | | +--rw multi-src? boolean {multi-src-dest}? | +--rw dest | | +--rw dest? -> /actn/ap/access-point-list/access-point-id | | +--rw dest-vn-ap-id? -> /actn/ap/access-point-list/vn-ap/vn-ap-id | | +--rw multi-dest? boolean {multi-src-dest}? | +--rw connetivity-matrix-id? -> /nw:networks/network/node/tet:te/te-node-attributes/connectivity-matrices/connectivity-matrix/id | +--ro oper-status? identityref +--ro if-selected? boolean {multi-src-dest}? +--rw admin-status? identityref +--ro oper-status? identityref +--rw vn-level-diversity? vn-disjointness Creation of VN id and linking to TE abstract node Linking to connectivity matrix of te topology to allow VN to configure type 2

TE VN+ Requirements From a customer perspective: Create dynamically their virtual network and operate it (create/modify/delete) without having to understand transport underlay details. Monitor KPI for their VN. From a provider perspective: Map and translate customer virtual network models (e.g., L1/2/3 VPN, VPN+) against TE constrained paths in transport network. Provision and manage end to end paths per VN instance. Monitor performance of slice at various levels: customer level, orchestration level and domain level. Provide deterministic performance guarantee for both latency and bandwidth (Hard Isolation). RTGWG @ IETF 102

TE & Service Mapping Model https://tools.ietf.org/html/draft-lee-teas-te-service-mapping-yang-08 VPN/TE Selection Policy New VN/Tunnel Binding – Customer could request a VPN service with a new VN/Tunnel not shared with other existing services Hard Isolation with deterministic characteristics Hard Isolation: This is similar to the above case without deterministic characteristics.  Soft Isolation: Customer would request an VPN service using a set of MPLS-TE tunnel which cannot be shared with other VPN services. VN/Tunnel Sharing with existing VNs/Tunnels resource multiplexing resource partition ultra resource partition  VN/Tunnel Modify - This mode allows the modification of the properties of the existing VN/tunnel (e.g., bandwidth) when VN/Tunnel Selection Mode is applied. Service Orchestrator CNC 1 L3SM + VN Creation Request 4 Update TE Service Mapping (L3SM binding to VN + TE-tunnel) MDSC TE Tunnel Setup Request 2 2 2 TE Tunnel Setup Request 5 5 PNC PNC PNC Create VRF & Route VPN to TE-tunnel TE Tunnel Setup Request TE Tunnel Setup Request 3 3 6 6 3 CE1 PE ASBR ASBR PE CE2 P MPLS Tunnel P P Optical Bypass Tunnel: PE (D1)-PE (D2) P Optical Transport Network RTGWG @ IETF 102

ietf-te-service-mapping https://tools. ietf VPN/Tunnel Selection Policy module: ietf-te-service-mapping +--rw te-service-mapping +--rw service-mapping | +--rw mapping-list* [map-id] | +--rw map-id uint32 | +--rw map-type? map-type | +--rw (service)? | | +--:(l3vpn) | | | +--rw l3vpn-ref? -> /l3:l3vpn-svc/vpn-services/vpn-service/vpn-id | | +--:(l2vpn) | | | +--rw l2vpn-ref? -> /l2:l2vpn-svc/vpn-services/vpn-service/vpn-id | | +--:(l1vpn) | | +--rw l1vpn-ref? -> /l1:l1cs/service/service-list/subscriber-l1vc-id | +--rw (te)? | +--:(actn-vn) | | +--rw actn-vn-ref? -> /vn:actn/vn/vn-list/vn-id | +--:(te-topo) | | +--rw vn-topology-id? te-types:te-topology-id | | +--rw abstract-node? -> /nw:networks/network/node/node-id | +--:(te-tunnel) | +--rw te-tunnel-list* te:tunnel-ref +--rw site-mapping +--rw mapping-list* [map-id] +--rw map-id uint32 +--rw (service)? | +--:(l3vpn) | | +--rw l3vpn-ref? -> /l3:l3vpn-svc/sites/site/site-id | +--:(l2vpn) | | +--rw l2vpn-ref? -> /l2:l2vpn-svc/sites/site/site-id | +--:(l1vpn) | +--rw l1vpn-ref? -> /l1:l1cs/access/uni-list/UNI-ID +--rw (te)? +--:(actn-vn) | +--rw actn-vn-ref? -> /vn:actn/ap/access-point-list/access-point-id +--:(te) +--rw ltp? te-types:te-tp-id typedef map-type { type enumeration { enum "new-hard-isolation-deterministic" { description "The new VN/tunnels are binded to the service"; } enum "new-hard-isolation" { "The VPN service selects an existing tunnel with no modification"; enum "new-soft-isolation" { "The VPN service selects an existing tunnel and allows to modify the properties of the tunnel (e.g., b/w) "; enum "share" { "share existing tunnel"; enum "modify" { allows to modify the properties of the tunnel (e.g., b/w)"; "The map-type"; RTGWG @ IETF 102

PM Telemetry & Network Autonomics https://tools. ietf VN Level Telemetry Domain 1 Domain 2 Domain 3 Domain Lvel Telemetry A Virtual network is created to load balance between two DCs. EP1 EP2 EP3 PNC MDSC CNC EP is (Customer) End Point subscription notification E2E tunnel level telemetry creation YANG PUSH mechanism for streaming KPI telemetry at various level: VN E2E Tunnel Domain LSP/Link Autonomic traffic engineering scaling intent configuration mechanism on the VN/Tunnel/Link level. E2E tunnel 1 E2E Tunnel 2 RTGWG @ IETF 102

ietf-te-kpi-telemetry model https://tools. ietf module: ietf-te-kpi-telemetry augment /te:te/te:tunnels/te:tunnel: +--rw te-scaling-intent | +--rw scale-in-intent | | +--rw threshold-time? uint32 | | +--rw cooldown-time? uint32 | | +--rw scale-in-operation-type? scaling-criteria-operation | | +--rw scale-out-operation-type? scaling-criteria-operation | | +--rw scaling-condition* [performance-type] | | +--rw performance-type identityref | | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name | +--rw scale-out-intent | +--rw threshold-time? uint32 | +--rw cooldown-time? uint32 | +--rw scale-in-operation-type? scaling-criteria-operation | +--rw scale-out-operation-type? scaling-criteria-operation | +--rw scaling-condition* [performance-type] | +--rw performance-type identityref | +--rw te-telemetry-tunnel-ref? -> /te:te/tunnels/tunnel/name +--ro te-telemetry +--ro id? string +--ro unidirectional-delay? uint32 +--ro unidirectional-min-delay? uint32 +--ro unidirectional-max-delay? uint32 +--ro unidirectional-delay-variation? uint32 +--ro unidirectional-packet-loss? decimal64 +--ro unidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32 +--ro unidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32 +--ro unidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32 +--ro bidirectional-delay? uint32 +--ro bidirectional-min-delay? uint32 +--ro bidirectional-max-delay? uint32 +--ro bidirectional-delay-variation? uint32 +--ro bidirectional-packet-loss? decimal64 +--ro bidirectional-residual-bandwidth? rt-types:bandwidth-ieee-float32 +--ro bidirectional-available-bandwidth? rt-types:bandwidth-ieee-float32 +--ro bidirectional-utilized-bandwidth? rt-types:bandwidth-ieee-float32 +--ro utilized-percentage? uint8 +--ro te-ref? -> /te:te/tunnels/tunnel/name Auto scale mechanism programmable by the customer per tunnel/VN Can subscribe PM parameters of interest per tunnel/VN RTGWG @ IETF 102

Recap: How VPN+ requirements fulfilled by ACTN with L2/3SM and TEAS models Isolation between VPNs Hard and soft isolation Guaranteed Performance Low latency, Low packet drop, Customized Control Plane Simple creation, deletion and modification of the services. Control over VPN Seamless integration of both physical and virtual network and service functions L2/3SM + ACTN VN YANG & TE & Svc Mapping. L2/3 SM + ACTN VN/TE-tunnels & PM Telemetry ACTN VN + TE-topo connectivity matrix SF-enable topology model (TEAS) RTGWG @ IETF 102

Any comments/feedback? Next Steps Any comments/feedback? RTGWG @ IETF 102 14

Thank you ! RTGWG @ IETF 102