CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems Real-Time Networks – WAN Packet scheduling (contd.)

Slides:



Advertisements
Similar presentations
CprE 458/558: Real-Time Systems
Advertisements

CS 268: Packet Scheduling Ion Stoica March 18/20, 2003.
1 Comnet 2010 Communication Networks Recitation 4 Scheduling & Drop Policies.
Multicost (or QoS) routing For example: More generally, Minimize f(V)=f(V 1,…,V k ) over all paths.
Fair Queueing. Design space Buffer management: –RED, Drop-Tail, etc. Scheduling: which flow to service at a given time –FIFO –Fair Queueing.
Winter 2004 UCSC CMPE252B1 CMPE 257: Wireless and Mobile Networking SET 3f: Medium Access Control Protocols.
1 CNPA B Nasser S. Abouzakhar Queuing Disciplines Week 8 – Lecture 2 16 th November, 2009.
Network and Communications Hongsik Choi Department of Computer Science Virginia Commonwealth University.
Engineering Internet QoS
Abhay.K.Parekh and Robert G.Gallager Laboratory for Information and Decision Systems Massachusetts Institute of Technology IEEE INFOCOM 1992.
Courtesy: Nick McKeown, Stanford 1 Intro to Quality of Service Tahir Azim.
Priority Scheduling and Buffer Management for ATM Traffic Shaping Authors: Todd Lizambri, Fernando Duran and Shukri Wakid Present: Hongming Wu.
Differentiated Services. Service Differentiation in the Internet Different applications have varying bandwidth, delay, and reliability requirements How.
Worst-case Fair Weighted Fair Queueing (WF²Q) by Jon C.R. Bennett & Hui Zhang Presented by Vitali Greenberg.
Introduction Future wireless systems will be characterized by their heterogeneity - availability of multiple access systems in the same physical space.
Scheduling CS 215 W Keshav Chpt 9 Problem: given N packet streams contending for the same channel, how to schedule pkt transmissions?
CS 268: Lecture 15/16 (Packet Scheduling) Ion Stoica April 8/10, 2002.
Networking Issues in LAN Telephony Brian Yang
Generalized Processing Sharing (GPS) Is work conserving Is a fluid model Service Guarantee –GPS discipline can provide an end-to-end bounded- delay service.
Service Disciplines for Guaranteed Performance Service Hui Zhang, “Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks,”
Katz, Stoica F04 EECS 122: Introduction to Computer Networks Packet Scheduling and QoS Computer Science Division Department of Electrical Engineering and.
CSE 401N Multimedia Networking-2 Lecture-19. Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet.
Computer Networking Lecture 17 – Queue Management As usual: Thanks to Srini Seshan and Dave Anderson.
CSc 461/561 CSc 461/561 Multimedia Systems Part C: 3. QoS.
EE 4272Spring, 2003 Chapter 11. ATM and Frame Relay Overview of ATM Protocol Architecture ATM Logical Connections ATM Cells ATM Service Categories ATM.
Packet Scheduling From Ion Stoica. 2 Packet Scheduling  Decide when and what packet to send on output link -Usually implemented at output interface 1.
CIS679: Scheduling, Resource Configuration and Admission Control r Review of Last lecture r Scheduling r Resource configuration r Admission control.
CSE QoS in IP. CSE Improving QOS in IP Networks Thus far: “making the best of best effort”
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
Distributed Multimedia March 19, Distributed Multimedia What is Distributed Multimedia?  Large quantities of distributed data  Typically streamed.
Univ. of TehranAdv. topics in Computer Network1 Advanced topics in Computer Networks University of Tehran Dept. of EE and Computer Engineering By: Dr.
CONGESTION CONTROL and RESOURCE ALLOCATION. Definition Resource Allocation : Process by which network elements try to meet the competing demands that.
Advance Computer Networking L-5 TCP & Routers Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan.
1. Performance Guarantees Introduction –by asking sources about flow behavior it is possible to construct networks that could guarantee performance for.
A T M (QoS).
Fair Queueing. 2 First-Come-First Served (FIFO) Packets are transmitted in the order of their arrival Advantage: –Very simple to implement Disadvantage:
March 29 Scheduling ?. What is Packet Scheduling? Decide when and what packet to send on output link 1 2 Scheduler flow 1 flow 2 flow n Buffer management.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
Packet Scheduling: SCFQ, STFQ, WF2Q Yongho Seok Contents Review: GPS, PGPS SCFQ( Self-clocked fair queuing ) STFQ( Start time fair queuing ) WF2Q( Worst-case.
CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems Real-Time Networks – WAN Packet Scheduling.
Scheduling Determines which packet gets the resource. Enforces resource allocation to each flows. To be “Fair”, scheduling must: –Keep track of how many.
CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems Distributed Real-Time Systems.
Scheduling CS 218 Fall 02 - Keshav Chpt 9 Nov 5, 2003 Problem: given N packet streams contending for the same channel, how to schedule pkt transmissions?
1 On Maximum Rate Control of Weighted Fair Scheduling Jeng Farn Lee.
1 Fair Queuing Hamed Khanmirza Principles of Network University of Tehran.
Queue Scheduling Disciplines
CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems Energy-aware QoS packet scheduling.
Multicost (or QoS) routing For example: More generally, Minimize f(V)=f(V 1,…,V k ) over all paths.
CSci5221: Packet Scheduling11 Packet Scheduling (and QoS) Packet Scheduling and Queue Management Beyond FIFO: –Class-based Queueing: Priority Queueing,
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 16 – Multimedia Transport (Part 2) Klara Nahrstedt Spring 2011.
Providing QoS in IP Networks
Scheduling for QoS Management. Engineering Internet QoS2 Outline  What is Queue Management and Scheduling?  Goals of scheduling  Fairness (Conservation.
Queue Scheduler RR v.s. SP v.s. WFQ 佇列排程. Basic Schedulers Round robin (RR) – 輪流、公平 Strict Priority (SP) – 壓倒性優先 Weight Fair Queue (WFQ) – 彈性優先.
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 17 – Multimedia Transport Subsystem (Part 3) Klara Nahrstedt Spring 2011.
CS244 Packet Scheduling (Generalized Processor Sharing) Some slides created by: Ion Stoica and Mohammad Alizadeh
04/02/08 1 Packet Scheduling IT610 Prof. A. Sahoo KReSIT.
QoS & Queuing Theory CS352.
Buffer Management in a Switch
TCP, XCP and Fair Queueing
Queuing and Queue Management
CprE 458/558: Real-Time Systems
Fair Queueing.
Computer Science Division
Congestion Control, Quality of Service, & Internetworking
Variations of Weighted Fair Queueing
Introduction to Packet Scheduling
EECS 122: Introduction to Computer Networks Packet Scheduling and QoS
Fair Queueing.
Introduction to Packet Scheduling
کنترل جریان امیدرضا معروضی.
Presentation transcript:

CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems Real-Time Networks – WAN Packet scheduling (contd.)

CprE 458/558: Real-Time Systems (G. Manimaran)2 Work-conserving vs. Non work-conserving Work conserving scheduler –Never leaves the link idle if there is a packet to be transmitted –Offers better link utilization –E.g., RR, WRR, WFQ Non work-conserving scheduler –Associate eligibility time with each packet and transmits packets only when they are eligible –Can provide delay-jitter control, easier implementation –E.g., HRR

CprE 458/558: Real-Time Systems (G. Manimaran)3 Fair Queuing (FQ) : Byte-by-Byte RR emulation A B C D E PacketFinish Time C8 B16 D17 E18 A20 Earliest Finish Time FQ Schedule Problem: Gives all the flows the same priority

CprE 458/558: Real-Time Systems (G. Manimaran)4 Weighted Fair Queuing (WFQ) A (3) B (2) C (1) D (2) E (3) PacketFinish Time A14 B16 C17 D19 E20 Earliest Finish Time WFQ Schedule

CprE 458/558: Real-Time Systems (G. Manimaran)5 Finish time/number expressions (1) Round Number [ R(t) ]: number of rounds of service a bit-by-bit round-robin scheduler has completed at a given time. –Eg: round number 3.5 means, three full rounds and fourth round is half-way through A connection is said to be active if the largest finish number of a packet either in its queue or last served from its queue is larger than the current round number Thus, the length of a round, that is, the time taken to serve one bit from each active connection, is proportional to the number of active connections

CprE 458/558: Real-Time Systems (G. Manimaran)6 Finish time/number expressions (2) Finish time for an inactive connection is: –F(i, k, t) = R(t) + P(i,k,t) * ø i –Where F(i, k, t) is the finish number for the kth packet on connection i –Where, R(t) is the round number –P(i,k,t) is the size of the k th packet that arrives on connection i at time t –Where ø i is the normalized weight ratio of the connection i. Finish time for an active connection is: –F(i, k, t) = F(i, k-1,t) + P(i,k,t) * ø i The general expression for finish time is: –F(i, k, t) = Max ( F(i, k-1,t), R(t) ) + P(i,k,t) * ø i

CprE 458/558: Real-Time Systems (G. Manimaran)7 Hierarchical Round Robin (HRR) In HRR, there are number of levels, each with a fixed number of slots serviced in a round-robin fashion A channel is allocated a given number of service slots at a selected level The scheduler cycles through the slots at each level The time taken to service all the slots at a given level is called theframe time at that level The total link bandwidth is partitioned in among these levels The key to HRR lies in its ability to give each level a constant share of the links bandwidth

CprE 458/558: Real-Time Systems (G. Manimaran)8 Hierarchical Round Robin – contd. The frame time for level 1, which is the smallest of all the levels, is the basic cycle time. If there are n 1 slots in a level 1 frame, then b 1 slots are allocated to higher levels, and the remaining (n 1 – b 1 ) slots are used for the level 1 connections The frame time for level-1 = FT 1 = n 1 The frame time for level-2 = FT 2 = (n 1 / b 1 ) * n 2 The frame time for level-I = FT i = (n 1 / b 1 ) * (n 2 / b 2 ) * … (n i-1 / b i-1 ) * n i Bandwidth allocated to each slot in level i = Link_BW / FT i where Link_BW is the total link bandwidth

CprE 458/558: Real-Time Systems (G. Manimaran)9 HRR design for a 4Mbps link Level inini bibi FT i Slot b/w Mbps Kbps Kbps L2 slot L3 slot b1 n1 Level 1 Level 2 Level 3 b2

CprE 458/558: Real-Time Systems (G. Manimaran)10 HRR – connection allocation example ChannelBandwidth need Level Assigned # of slots C12 Mbps12 C21 Mbps11 C3250 Kbps21 C4500 Kbps22 C5125 Kbps31 C6100 Kbps31 Level 3 c1 c2L2 c3c4 L3 c5c6 b1 n1 Level 1 Level 2b2 c1 c2c3c1 c2c4c1 c2c4c1 c2c5 HRR Schedule up to 16 slots

CprE 458/558: Real-Time Systems (G. Manimaran)11 Real-Time WAN -- Summary QoS parameters – bandwidth, delay, delay jitter, packet loss Traffic types – CBR and VBR Traffic models – Peak rate model, LBAP Real-time channel setup –QoS routing and Resource reservation Data transmission phase –Traffic shaping: Leaky bucket, Token bucket –Packet scheduling: RR, WRR, WFQ, HRR