Project Scheduling: PERT-CPM

Slides:



Advertisements
Similar presentations
3 Project Management PowerPoint presentation to accompany
Advertisements

PROJECT SCHEDULING: PERT/CPM
Lecture 4 – PERT Diagrams & CPM
Developing a Project Plan CHAPTER SIX Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Chapter 6 Scheduling. 222 Learning Objectives Estimate the duration for each activity Establish the estimated start time and required completion time.
Chapter 10 Project Scheduling: PERT/CPM
Chapter 7 Project Management
Associate Professor MIS Department UNLV
USING MS PROJECT Project management software programs such as Microsoft Project can be used to compute the earliest and latest start and finish times and.
Chapter 8 - Project Management Chapter Topics
Chapter 6: Developing a Project Plan
Developing the Project Plan
Project Management Projects are unique, one-time operations designed to accomplish a specific set of objectives in a limited timeframe Project managers.
Start D finish A B C E I G H F J KL N M ActivityDescription AExcavate BFoundation CRough wall DRoof EExterior plumbing FInterior.
Finding the Critical Path
Developing a Project Plan
Project Scheduling: PERT/CPM
WOOD 492 MODELLING FOR DECISION SUPPORT
1 1 Slide © 2006 Thomson South-Western. All Rights Reserved. Slides prepared by JOHN LOUCKS St. Edwards University.
Chapter 13 Project Scheduling: PERT/CPM
Chapter 9 Project Scheduling: PERT/CPM
Chapter 3 Project Management.
Network analysis is the general name given to certain specific techniques which can be used for the planning, management and control of projects. Use.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edwards University.
Introduction to Management Science
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
2 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Project Management 2.
Gantt Chart Graph or bar chart with a bar for each project activity that shows passage of time Provides visual display of project schedule Slack amount.
1 1 Slide © 2005 Thomson/South-Western Q 5 – 13 x 1 = the probability that Station A will take Sitcom Rerun x 2 = the probability that Station A will take.
1 1 Slide © 2004 Thomson/South-Western Chapter 12 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with.
Project Scheduling Prof. Jiang Zhibin Dept. of IE, SJTU.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
MGMT 483 Week 8 Scheduling.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Project Management with PERT/CPM
PERT/CPM Models for Project Management
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 10 Project Scheduling: PERT/CPM
1 Slide © 2005 Thomson/South-Western Chapter 10 Project Scheduling: PERT/CPM Project Scheduling with Known Activity Times Project Scheduling with Known.
Project Management Techniques.
EMGT 501 HW #2 Answer. 020/3 X 3 05/601-1/62/3050/3 X 6 0-5/300-2/3-1/3180/3 (c).3/230with )3/80,0,0,3/50,3/20,0(*)*, ( solution Optimal   Z.
EMGT 501 HW #2 Solutions Chapter 6 - SELF TEST 21 Chapter 6 - SELF TEST 22.
Project Management. Introduction What – Project Management Where – Where the success or failure of a project will have major consequences for the company.
© 2000 by Prentice-Hall Inc Russell/Taylor Oper Mgt 3/e Chapter 6 Project Management.
USING MS PROJECT Project management software programs such as Microsoft Project can be used for developing the project schedule We demonstrate the use.
Project Management CPM, PERT, Crashing – An Illustrative Example
USING MS PROJECT 2010 Project management software programs such as Microsoft Project 2010 can be used for developing the project schedule and budget, and.
MANA 705 DL © Sistema Universitario Ana G. Méndez, All rights reserved. W6 6.2 Operation Management Operation Management Managing Projects Techniques.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 8 (PERT/CPM Models for Project Management) A Case Study: The Reliable.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 17 Project Management Part.
Project Management (專案管理)
Project Management Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
1 1 Project Scheduling PERT/CPM Networks. 2 2 Originated by H.L.Gantt in 1918 GANTT CHART Advantages - Gantt charts are quite commonly used. They provide.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with.
8-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Project Management Chapter 8.
Scheduling Scheduling : is the process of converting a project action plan into an operating time table. Why scheduling ? To answer the following questions:
Project Management (專案管理)
UNIT II Scheduling Procedures & Techniques FLOAT
Project Management (PERT/CPM) PREPARED BY CH. AVINASH
Project Planning & Scheduling
PROJECT MANAGEMENT WITH CPM/PERT.
Decision making and Organization Management
Project Scheduling Network Optimization can be used as an aid in the scheduling of large complex projects that consist of many activities A project is.
Project Management CPM Method Tutorial-p1
תזמון פרויקטים.
General Foundry Example of PERT/CPM
Slides Prepared by JOHN LOUCKS
Planning and Managing Projects
Presentation transcript:

Project Scheduling: PERT-CPM

PERT (Program evaluation and review technique) and CPM (Critical Path Method) makes a managerial technique to help planning and displaying the coordination of all the activities.

Activity Description Immediate Predecessors Estimated Time Activity B C D E F G H I J K L M N Excavate Lay the foundation Put up the rough wall Put up the roof Install the exterior plumbing Install the interior plumbing Put up the exterior siding Do the exterior painting Do the electrical work Put up the wallboard Install the flooring Do the interior painting Install the exterior fixtures Install the interior fixtures - A B C E D E,G F,I J H K,L 2 weeks 4 weeks 10 weeks 6 weeks 5 weeks 7 weeks 9 weeks 8 weeks

Immediate predecessors: For any given activity, its immediate predecessors are the activities that must be completed by no later than the starting time of the given activity.

AOA (Activity-on-Arc): Each activity is represented by an arc. The arcs are used to show the precedence relationships between the activities.

START (Estimated) Time 2 A arc node B 4 C 10 D I 7 6 4 E 5 7 F G J 8 H K L 9 4 5 M 2 N 6 FINISH

Path and Length START A B C D G H M FINISH 2 + 4 + 10 + 6 + 7 + 9 + 2 = 40 weeks START A B C E F J K N FINISH 2 + 4 + 10 + 4 + 5 + 8 + 4 + 6 = 43 weeks START A B C E F J L N FINISH 2 + 4 + 10 + 4 + 5 + 8 + 5 + 6 = 44 weeks Critical Path

Critical Path: A project time equals the length of the longest path through a project network. The longest path is called “critical path”. Activities on a critical path are the critical bottleneck activities where any delay in their completion must be avoided to prevent delaying project completion.

ES : Earliest Start time for a particular activity EF : Earliest Finish time for a particular activity

START 2 ES=0 EF=2 A B 4 ES=2 EF=6 C 10 ES=6 EF=16 D I 7 6 ES=16 EF=23 ES=16 EF=22 4 ES=16 EF=20 E 7 5 ES=22 EF=29 ES=20 EF=25 G F J 8 H 9 K 4 L 5 M 2 N 6 FINISH

Earliest Start Time Rule: If an activity has only a single immediate predecessor, then ES = EF for the immediate predecessor. Earliest Start Time Rule: The earliest start time of an activity is equal to the largest of the earliest finish times of its immediate predecessors. ES = largest EF of the immediate predecessors.

START ES=0 EF=2 2 A B 4 ES=2 EF=6 C 10 ES=6 EF=1 D I 7 6 ES=16 EF=23 ES=16 EF=22 4 ES=16 EF=20 E 7 5 ES=22 EF=29 ES=20 EF=25 G F J 8 ES=25 EF=33 H 9 ES=29 EF=38 K 4 ES=33 EF=37 L 5 ES=33 EF=38 M 2 ES=38 EF=40 N 6 ES=38 EF=44 FINISH ES=44 EF=44

Latest Finish Time Rule: LS: Latest Start time for a particular activity LF: Latest Finish time for a particular activity Latest Finish Time Rule: The latest finish time of an activity is equal to the smallest of the latest finish times of its immediate successors. LF = the smallest LS of immediate successors.

START LS=0 LF=0 2 LS=0 LF=2 A B 4 LS=2 LF=6 C 10 LS=6 LF=16 D I 7 6 4 LS=18 LF=25 LS=20 LF=26 LS=16 LF=20 E 7 5 LS=26 LF=33 LS=20 LF=25 G F J 8 LS=25 LF=33 H 9 LS=33 LF=42 K 4 LS=34 LF=38 L 5 LS=33 LF=38 M 2 LS=42 LF=44 N 6 LS=38 LF=44 FINISH LS=44 LF=44

Earliest Start Time Latest Start Time S=( 2, 2 ) F=( 6, 6 ) Earliest Finish Time Latest Finish Time

START S=(0,0) F=(0,0) 2 S=(0,0) F=(2,2) A Critical Path B 4 S=(2,2) F=(6,6) C 10 S=(6,6) F=(16,16) D I 7 S=(16,18) F=(23,25) 4 S=(16,16) F=(20,20) 6 S=(16,20) F=(22,26) E 7 5 S=(22,26) F=(29,33) S=(20,20) F=(25,25) G F 8 S=(25,25) F=(33,33) J H 9 S=(29,33) F=(38,42) K 4 S=(33,34) F=(37,38) L 5 S=(33,33) F=(38,38) M 2 S=(38,42) F=(40,44) N 6 S=(38,38) F=(44,44) FINISH S=(44,44) F=(44,44)

Slack: A difference between the latest finish time and the earliest finish time. Slack = LF - EF Each activity with zero slack is on a critical path. Any delay along this path delays a whole project completion.

Three-Estimates Most likely Estimate (m) = an estimate of the most likely value of time. Optimistic Estimate (o) = an estimate of time under the most favorable conditions. Pessimistic Estimate (p) = an estimate of time under the most unfavorable conditions.

Beta distribution o p m Mean : Variance:

Mean critical path: A path through the project network becomes the critical path if each activity time equals its mean. Activity OE M PE Mean Variance 1 2 3 2 A B C 2 8 4 1 6 9 18 10 4 OE: Optimistic Estimate M : Most Likely Estimate PE: Pessimistic Estimate

Activities on Mean Critical Path Variance A B C E F J L N 2 4 10 5 8 6 1 4 Project Time

Approximating Probability of Meeting Deadline Assumption: A probability distribution of project time is a normal distribution. T = a project time has a normal distribution with mean and , d = a deadline for the project = 47 weeks.

Using a table for a standard normal distribution, the probability of meeting the deadline is P ( T d ) = P ( standard normal ) = 1 - P( standard normal ) = 1 - 0.1587 0.84.

Time - Cost Trade - Offs Activity cost Crash Crash cost Normal Crashing an activity refers to taking special costly measures to reduce the time of an activity below its normal value. Activity cost Crash Crash cost Normal Normal cost Crash time Normal time Activity time

Activity J: Normal point: time = 8 weeks, cost = $430,000. Crash point: time = 6 weeks, cost = $490,000. Maximum reduction in time = 8 - 6 = 2 weeks. Crash cost per week saved = = $30,000.

Maximum Reduction in Time (week) Time (week) Cost ($1,000) Crash Cost per Week Saved Activity N C N C A B J 2 4 8 1 2 6 $180 $320 $430 $280 $420 $490 1 2 $100 $ 50 $ 30 N: Normal C: Crash

Using LP to Make Crashing Decisions Let Z be the total cost of crashing activities. A problem is to minimize Z, subject to the constraint that its project duration must be less than or equal to the time desired by a project manager.

= the reduction in the time of activity j by crashing it = the project time for the FINISH node

= the start time of activity j Duration of activity j = its normal time Immediate predecessor of activity F: Activity E, which has duration = Relationship between these activities:

Immediate predecessor of activity J: Activity F, which has time = Activity I, which has time = Relationship between these activities:

The Complete linear programming model Minimize

One Immediate Predecessor Two Immediate Predecessors Finish Time = 40 Total Cost = $4,690,000