Advanced Virgo ISC subsystem

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
The GEO 600 Detector Andreas Freise and the GEO 600 Team University of Hannover May 20, 2002.
Stefan Hild, M.Mantovani, A.Perreca and A. Freise Advanced Virgo meeting, August 2008 Automated simulations: choosing modulation frequencies à la Advanced.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Status of the Virgo Commissioning G.Losurdo – INFN Firenze/Urbino for the Virgo Collaboration.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Locking improvements after the end of VSR1 Gabriele Vajente for the Locking Group 14 th ILIAS WG1 meeting Cascina – March 6 th 2008.
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
Optics of GW detectors Jo van den Brand
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Joshua Smith December 2003 Detector Characterization of Dual-Recycled GEO600 Joshua Smith for the GEO600 team.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Control Matt Evans …talk mostly taken from…
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Advanced VIRGO WG1: Status VIRGO, Cascina Andreas Freise University of Birmingham.
04. November 2004 A. Freise A. Freise, M. Loupias Collaboration Meeting November 04, 2004 Alignment Status.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
LIGO- G R Telecon on June, Mach-Zender interferometer to eliminate sidebands of sidebands for Advanced LIGO Osamu Miyakawa, Caltech.
1 Virgo commissioning: Next steps December 12 st 2005 Hannover, ILIAS-GWA WG1 Matteo Barsuglia, LAL/CNRS.
LIGO- G R Sensing and control, SPIE conference, June Sensing and control of the Advanced LIGO optical configuration SPIE conference at.
Arm Length Stabilisation for Advanced Gravitational Wave Detectors Adam Mullavey, Bram Slagmolen, Daniel Shaddock, David McClelland Peter Fritschel, Matt.
G Z AJW for Marcus Benna, Cambridge Wavefront Sensing for Advanced LIGO Model of wavefront sensing in a dual- recycled interferometer Consequences.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
1 1.Status a.Design requirements: almost complete. b.Preliminary design: on-going 2.WBS a.Tasks and subtasks b.Manpower, responsibility issues 3.Interfaces.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
MSC - 18 Oct 071 LOW FREQUENCY SEISMIC NOISE: LOCKING AND SENSITIVITY ISSUE Paolo Ruggi noise meeting.
Lisa Barsotti - University and INFN Pisa – on behalf of the Virgo Collaboration CASCINA - January 24 th, 2005 ILIAS  Locking of Full Virgo Status of VIRGO.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
1 LESSONS FROM VIRGO+ May 17th 2010 E. Calloni for the Virgo collaboration.
LIGO-G D 1 Status of Detector Commissioning LSC Meeting, March 2001 Nergis Mavalvala California Institute of Technology.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Analysis of the Virgo runs sensitivities Raffaele Flaminio, Romain Gouaty, Edwige Tournefier Summary : - Introduction : goal of the study / Overview on.
Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT Understanding Detector Performance and Ground-Based Detector Designs LIGO-G
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
CITF A. Allocca, M. Mantovani. Outline CITF schematic Resonance conditions Effect of the misalignment on the error signals Comparison with Virgo+ Effect.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
Sensitivity of Virgo E. Tournefier (LAPP-CNRS) LSC-Virgo week May 23 rd,2007 LIGO-G Z.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
1 ILIAS WG1 meeting, Hannover The 2 nd modulation frequency project.
Automation of the Lock Acquisition of the 3 km Arm Virgo Interferometer F. Carbognani for The Virgo Collaboration ICALEPCS - Geneva 14 October, 2005.
Interferometer configurations for Gravitational Wave Detectors
ISC scope and activities Optical spring
Status report of Polarization RSE
Signal recycling R&D at LAL: Influence in Virgo
Yoichi Aso on behalf of the LCGT ISC Group
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Effect of sideband of sideband on 40m and Advanced LIGO
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Virgo Update – LSC meeting
Heavy IMC end payload requirements
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
Improving LIGO’s stability and sensitivity: commissioning examples
Alignment Investigations towards Advanced Virgo
Status at the Prague meeting
Automatic Alignment Control scheme for Advanced Virgo
Presentation transcript:

Advanced Virgo ISC subsystem Maddalena Mantovani For the ISC group VIR-0287A-19

Introduction The Advanced Virgo detector show its best sensitivity only when the main mirrors (PR,BS,NI,NE,WI,WE) are in precise microscopic positions (so called working point) Arm cavities on resonance Central interferometer on destructive interference Power recycling cavity on resonance Mirrors aligned with respect the main beam For this reason a very sofisticated control system has been developed and implemented Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Longitudinal degrees of freedom Dofs to be controlled Longitudinal degrees of freedom Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Angular degrees of freedom Dofs to be controlled Arm cavities modes: Common(+) and Common(-) Differential(+) and Differential(-) PR BS The accuracy requirements are ~nrad for the cavity mirrors!!! Angular degrees of freedom Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Control principle The mirrors are controlled by using the signals coming from the main beams, with a technique which is based on the modulation/demodulation technique (Pound-Drever-All technique). Phase modulation: create sidebands around the carrier (ω0) at ± the modulation frequency, Ω. Error signal → beat note between carrier and non-resonant sidebands Similar technique for the angular control Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Lock acquisition and steady state The ISC subsystem take cares of bringing all the mirrors from un- controlled state to the final working point (which is called lock acquisition) and to maintain the final working with good performance, i.e. low noise and high duty cycle (steady state = science configuration). The lock acquisition has been developed as the adiabatic transition from steady states going towards more and more complex configurations Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Lock acquisition Variable-finesse technique Steady state Lock aquisition Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

Steady state performance The duty cycle ensured by the ISC subsystem is usally larger than 80% Virgo Week - ISC - Jan 22th 2019 Maddalena Mantovani

the end … Virgo Week - ISC - Jan 22th 2019